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Abstract

Whittaker, Jed Douglas (Ph.D., Physics)

Dispersive measurement of a metastable phase qubit using a tunable cavity

Thesis directed by Dr. Raymond W. Simmonds

A metastable phase qubit was measured using a tunable cavity by two methods:

a tunneling measurement followed by magnetometry readout by the cavity, and a non

destructive dispersive measurement of the qubit by the cavity. The Purcell Effect was

observed as a decrease in the energy relaxation time of the qubit in the vicinity of

the cavity, and could be manipulated by dynamically tuning the cavity. The observed

dispersive shift of the cavity did not match the two-level system model for nonlinear

qubits. Instead, a three-level model of the qubit was needed to describe the data,

necessitated by the weakly nonlinear nature of the metastable phase qubit. The cavity

was also used to directly observe the photons radiated by a tunneling measurement.
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1

Introduction

1.1 Quantum computing

The twentieth century has seen the esoteric thought experiments about single quantum particles

from the fathers of quantum mechanics, like Bohr and Einstein, become a laboratory reality. For

example, the wave-particle dual nature of electrons has been demonstrated using a Young’s double

slit experiment, recording the measurement locations of individual electrons[1]. Similar experiments

have been done with atoms[2][3]. Bohr’s extension of Young’s double slit experiment included a

spring connected to one of the slits in order to gain information about which path the quantum

particle took, a thought experiment intended to further explore his ideas about complementarity.

This experiment has also been performed in the laboratory using an atom interferometer[4], and

even in the case where an analogue to the spring’s stiffness was tuned to explore the boundary

between the classical and the quantum[5].

Interest in controlling single quantum objects has grown considerably in recent decades as

supporting technologies have matured, such as lasers and detectors. The 2012 Nobel Prize in

physics, given to Serge Haroche and David J. Wineland for “for ground-breaking experimental

methods that enable measuring and manipulation of individual quantum systems.” Both Haroche
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and Wineland built and manipulated systems made of a single quantum two-level system coupled

to a quantum harmonic oscillator. Besides the fundamental physical and philosophical questions

that individual quantum system experiments answer, practical applications are becoming apparent,

namely quantum computing. First proposed by Richard Feynman[6] in 1982 as a way to simulate

physics that cannot be simulated with classical computers, building a quantum computer has

become an important technological priority for governments and scientists around the world.

The fundamental unit of quantum computing is the quantum bit, or “qubit.” Physical imple-

mentations of qubits vary, as will be discussed, but there are universal attributes qubits share. In

2000, DiVincenzo outlined his “requirements for the implementation of quantum computation”[7],

which have become widely accepted. These requirements are:

1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits to a simple fiducial state, such as |000 . . .〉

3. Long relevant decoherence times, much longer than the gate operation time

4. A “universal” set of quantum gates

5. A qubit-specific measurement capability

A variety of quantum systems are being explored as possible qubit implementations, with vary-

ing levels of success. Molecular proton spins have been controlled with NMR to perform a simple

factoring operation[8]. Trapped ions have been used to make rudimentary quantum processors[9]

and work is progressing toward scaling to bigger processors[10]. Full quantum control of a single

Bose-Einstein condensate qubit made on a chip has been demonstrated[11], as well as entanglement

interactions between Bose-Einstein qubits[12] made on more traditional optical lattices. A quantum

algorithm has been run using photons and linear optical circuits[13]. Full quantum control over

self-assembling semiconducting quantum dots has also been shown[14]. Superconducting qubits,
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a subset of which are the subject of this work, have also been used to run rudimentary quantum

algorithms[15][16] and to measure non-local quantum correlations[17].

Each of these implementations has strengths and weaknesses, which may be categorized ac-

cording to the DiVincenzo criteria. One of the strengths of superconducting qubits is related to

scalability. Part of the scalability criterion is that one must be able to couple many qubits, build-

ing a quantum processor. Because superconducting qubits are made using microfabrication, many

may be readily produced on the same wafer simultaneously, and they are easily coupled through

microfabricated circuit elements. The circuit nature of superconducting qubits also allows them

to be both flexible in design as well as flexible in operation, as they may be made tunable over

hundreds of linewidths. Many other implementations, such as those based on atoms and traps or

physical cavities, have quite limited tunability, usually on the order of a single linewidth.

1.2 Superconducting qubits

Superconducting qubits may be classified as either charge qubits, flux qubits, or phase qubits,

shown in Figure 1.1. These qubits are named not for how the quantum state is encoded, but for

Figure 1.1: Types of superconducting qubits - The three types of superconducting qubits, with
their corresponding potential energies plotted below. The name of each qubit type corresponds to its
control variable.
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what variable is used to control the quantum state. The potential for each qubit is plotted against

the name variable for each qubit type in Figure 1.1.

Charge qubits are based on the nonlinearity of the Cooper pair box, make from two par-

allel Josephson junctions and a gate capacitor, and were first made and measured in the late

1990s[18][19]. While very anharmonic, and therefore very easily addressable qubits, they are very

susceptible to charge noise and have therefore fallen out of favor as a qubit implementation.

Flux qubits are made from a single Josephson junction in parallel with an inductor, which was

latter replaced by a second junction, that allows flux from an external source to be coupled in. This

qubit was first made and measured in 2000[20][21]. The potential well of the flux qubit is double

valued, with a small barrier between wells. Since there is an inductor instead of a gate capacitor,

the flux qubit is insensitive to charge noise. While it may be susceptible to flux noise, it has the

advantage of being able to be tuned to a “sweet spot,” where it is flux insensitive.

Phase qubits are, at their core, simply a Josephson junction attached to a current bias, with the

bias controlling the quantum mechanical phase across the junction. The current bias is tuned to

control the spacing between energy levels, which changes both the transition frequency of the lowest

two levels and the relative difference between the lowest two transitions, or relative anharmonicity.

While they have a very controllable anharmonicity, there tend to be regions where they are sensitive

to flux noise. Phase qubits were first made and measured in 2002[22].

Since their introductions, the charge and phase qubits have evolved some common features.

First, most designers have gone towards using a flux bias and an inductance to control their qubits,

moving away from noisier direct coupling to source instrumentation. Second, they now both include

a shunting capacitor in parallel with the junction. For the charge qubit this was done to make it

insensitive to charge noise by making it wholly insensitive to charge; the control variable hence

became the quantum mechanical phase across the junction. Since this leads to a periodic cosine-

shaped potential where the state inhabits only one well, in this work it will be referred by the
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general name “stable phase qubit,” although in the literature it is referred to as the “transmon.”

The current-biased phase qubit adopted a shunting capacitor as needed to keep the qubit frequencies

in a convenient range as junction sizes shrank to reduce dielectric losses from spurious two level

systems, though the phase variable was still maintained as the control variable. The multi-well

nature of this type of phase qubit can lead to metastable well states, so this type of phase qubit

will be referred to by the general name ”metastable phase qubit,” though in the literature it is

referred to simply as the “phase qubit.” Chapter 2 will discuss the similarities and differences

between these two types of phase qubits in detail.

Because of the ease of coupling between superconducting qubits, care must be taken when

manipulating a measuring a single qubit in the midst of many other qubits so that the others are not

disturbed during the procedure. One must be able to individually manipulate and measure a qubit,

to the exclusion of all the other qubits. If this ability has not been achieved the system is not fully

scalable, even though many qubits have been printed and connected on a wafer. Metastable phase

qubits have traditionally been measured using a tunneling measurement, which will be described

in detail in Section 3.2, which destroys the qubit state and sends a chirped microwave pulse to

anything to which it is coupled. Because of its destructive nature, the tunneling measurement is

not a feasible measurement for scaling up to a many qubit quantum processor. A nondestructive

measurement is needed, which can be done using a cavity coupled to a qubit. Such a measurement

of a metastable phase qubit will be demonstrated in this work, for the first time.

1.3 Circuit quantum electrodynamics

As superconducting qubits have moved from basic characterization experiments to quantum

control experiments with an eye toward quantum computation, the field has also emulated cavity

quantum electrodynamics (CQED), the study of quantum spins coupled to quantum oscillators,

with its own version, circuit quantum electrodynamics (cQED). In cQED, a qubit is coupled to
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a cavity, just like the CQED version where an atom is coupled to a cavity. This was first done

in the single photon regime in 2005 using a charge qubit placed in a transmission line cavity[23].

This elegant experiment was performed with a projection measurement that did not destroy the

qubit, leaving it ready to be used again, starting from its projected state. Later experimenters

have used cQED architectures to explore the quantum nature of the linear cavity[24]. However,

when considering DiVincenzo’s scaling requirement for quantum computation, fixed cavities become

impractical as their finite bandwidth limits the number that may be used in a given frequency space,

since all coupled qubit/cavity systems suffer loss from the qubit to the environment through the

cavity via the Purcell effect. A cavity behaves as a narrow-band filter between the qubit and

the environment, and will enhance loss from the already short-lived superconducting qubit to the

environment anytime the qubit and cavity are close to resonance. This hole in the qubit’s frequency

range limits the available bandwidth and makes scaling up such systems difficult.

In this work, a tunable cavity is used to measure and read out the state of a metastable phase

qubit in a nondestructive, projective measurement. This brings the advantages of cQED-type

measurement to metastable phase qubits for the first time. The tunable cavity is also a solution

to the limited bandwidth problem due to the Purcell effect losses near fixed cavities. One could

tune the cavity into resonance with a qubit or qubits only when needed for measurement; it may

be detuned out of the way at other times to free up bandwidth for other operations, limiting loss

via the Purcell effect. In this work we perform rudimentary qubit operations with a metastable

phase qubit, but for the first time use a tunable cavity system for measurement. Using a cavity,

tunable or not, to measure a metastable phase qubit is an improvement because it is nondestructive

to the measured qubit and to any other coupled quantum systems. The tunable cavity is also an

improvement over fixed cavity cQED as the cavity may be dynamically moved in frequency space

to avoid loss. These two features, cavity measurement and tunability, make the device presented

in this work both new and useful.
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1.4 Overview of dissertation

This work is organized as follows. Chapter 2 provides the theoretical background for phase qubit

physics by considering the addition of a Josephson junction to an electrical quantum harmonic

oscillator. Circuit quantum electrodynamics is introduced and discussed in the context of a weakly

anharmonic qubit, deriving the dispersive shift from the Jaynes-Cummings Hamiltonian. The

Purcell effect is also derived and discussed. Chapter 3 describes the control and measurement of

the metastable phase qubit, for both tunneling measurement and dispersive measurement. Chapter

4 covers the design and modeling of the device. Chapter 5 describes the fabrication of the device,

including packaging. Chapter 6 is an overview of the experimental setup, including wiring setup,

instrument function, and system characterization. Chapter 7 presents data taken using tunneling

measurements, including tomographic control and measurement, observation of the Purcell effect,

and a measurement of photons generated by a tunneling measurement entering the cavity. Chapter

8 presents data from dispersive measurements, including state discrimination data. Chapter 9 is a

summary of results and suggestions for future work.
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2

The nonlinear quantum electrical

resonator

2.1 Linear LC resonator

2.1.1 Circuit description

The electrical simple harmonic oscillator is a very natural place to start describing supercon-

ducting qubits, as it shares many of their features and components. Figure 2.1 is the simplest form

of the parallel inductor-capacitor (LC) resonator, as it doesn’t have any resistive loss components.

Using Kirchhoff’s Laws, one can write down the differential equation for this circuit,

Figure 2.1: Driven LC resonator circuit schematic - Schematic for a driven linear LC resonator
without internal loss.
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ÏL +
1

Z0C
İL +

1

LC
IL =

Vs cos(ωt)

Z0LC
. (2.1)

This is of the same form as the standard driven simple harmonic oscillator,

ẍ+ 2βẋ+ ω2
0x = A cos(ωt). (2.2)

The similarity of these two equations allows us to surmise that the resonant frequency of the system

is ω2
0 = 1/LC, and that the damping is provided through the capacitor by source impedance as

2β = 1/CZ0. Note that this source of damping needs to be minimal for achieving high quality

factor LC resonators, even in the present case where the inductive and capacitive portions of the

circuit are assumed to be lossless. If superconductors are used for wiring, no resistive loss need be

included in the circuit. But in real superconducting LC circuits there is always loss from dielectrics

in and near the capacitor, the magnitude of which is dependent both on the material properties[25]

and the capacitor geometry[26]. Loss is usually represented in the circuit schematic as a resistor in

parallel with the capacitor. Minimizing loss during circuit design will be discussed in Chapter 4.

The total energy of a non-driven parallel LC resonator is just the sum of the energy in the

inductor and the energy in the capacitor. Doing the change of variables IL = Φ/L, VC = Q/C on

this sum transforms it to a proper Hamiltonian, as Φ and Q are canonically conjugate variables,

T + U =
1

2
LI2

L +
1

2
CV 2

C → H =
Φ2

2L
+
Q2

2C
(2.3)

This Hamiltonian is completely classical, corresponding to circuits operated in the classical regime

(~ω0 � kBT ). However, if an LC resonator is operated cold enough, a quantum mechanical

description is necessary.
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2.1.2 Quantum description

In order to explore the quantum properties of the LC resonator[27], rewrite the Hamiltonian

using quantum mechanical operators as

Ĥ =
Φ̂2

2L
+
Q̂2

2C
. (2.4)

This change of variables gives us an expression that can be directly rewritten as quantum mechanical

operators, with flux analogous to position and charge analogous to momentum. These operators

obey the commutation relation

[Q̂, Φ̂] = i~. (2.5)

As a quantum harmonic oscillator, the Hamiltonian may also be written in the more general way[28]

Ĥ = ~ω0

(
a†a+ 1/2

)
(2.6)

with the annihilation and creation operators

a =

√
Cω0

2~
Φ + i

√
1

2~Cω0
Q, a† =

√
Cω0

2~
Φ− i

√
1

2~Cω0
Q, (2.7)

where ω0 = 1/
√
LC. This simple harmonic oscillator Hamiltonian can be solved exactly for the

wavefunctions[28]

ψn(Φ) =

(
Cω0

π~22n(n!)2

)1/4

e−
Cω0Φ2

2~ Hn

[√
Cω0

~
Φ

]
, (2.8)

where Hn is the nth Hermite polynomial. The first five states are plotted in Figure 2.2.
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Figure 2.2: Quantum harmonic oscillator - Quantum harmonic oscillator potential well and first
5 energy levels (dotted grey), as well as their corresponding wavefunctions (red).

2.2 Nonlinear Josephson resonator

2.2.1 Circuit description

While the LC resonator has discrete quantum levels which may be observed at sufficiently

low temperature, those levels are evenly spaced in energy and therefore not easily individually

addressable. Thus, the quantum LC resonator does not meet the DiVincenzo criterion that requires

well-defined qubits [7] for performing quantum computations. But by deforming the potential

using an appropriate nonlinear element, the resulting oscillator can be made to have individually

addressable levels and become a quantum computation element candidate. The nonlinear, and

sometimes described as dissipationless, element added to superconducting circuits is the Josephson

junction, shown in a resonator circuit in Figure 2.3a as an X. The Josephson junction will be

described in more detail below. The geometric inductance Lg allows the junction’s critical current

to be controlled by an externally applied flux, tuning the circuit’s resonant frequency. The ratio

between Lg and the zero-bias effective junction inductance LJ0 also sets the hysteresis of the qubit

potential wells, as we shall see below in Section 2.3.1. The shunting capacitor Cs allows the resonant
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Figure 2.3: Nonlinear resonator circuit - a) Schematic for a nonlinear resonator based on a
Josephson junction. The geometric inductance Lg allows flux (Φex) to be coupled into the loop in order
to tune the junction’s critical current Ic. The shunting capacitor Cs allows the resonant frequency of
the circuit to be chosen by the designer. b) The Josephson junction’s effective inductance LJ changes
with applied external flux Φex, changing its resonant frequency in a periodic way.

frequency of the circuit to be altered to meet design parameters. If a particular materials system

within the shunting capacitor has a lower loss than the Josephson junction being used then the

capacitor’s participation ratio may be increased (by increasing the value of the capacitance) to

increase the resonator’s lifetime. A large inductance placed in series with the Josephson junction

may also be used to lower the junction’s participation ratio and increase the resonator’s lifetime.

Design choices to minimize loss are discussed in detail in Chapter 4.

2.2.1.1 The Josephson junction

The aluminum/aluminum oxide/aluminum (Al/AlOx/Al) insulating barrier, shown in Figure

2.4a, has become commonly used as a Josephson junction in superconducting quantum computing

applications because of its low loss and ease of fabrication. In a superconducting Josephson

junction the insulating barrier is thin enough to allow the overlap of electron pair wave functions,

such that a pair may move across the barrier without any applied voltage. Electron pairs in
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Figure 2.4: The Josephson junction - a) The Al/AlOx/Al Josephson junction. b) The Josephson
junction can be modeled by the parallel combination of a variable inductor, a capacitor, and a resistor.
The junction capacitance is typically 50 ff/µm2.

Josephson junctions behave according to the Josephson current and voltage relations

I = Ic sin δ,
∂δ

∂t
=

2e

~
V, (2.9)

where δ is the quantum mechanical phase difference of the electron pair wavefunction across the

junction and Ic is the critical current of the junction. Ic is the current at which a current-biased

junction switches from a zero voltage state to a voltage state. A more detailed description and

derivations of the Josephson relations may be found in [29]. Josephson junctions may be described

using a circuit model, as a variable inductance in parallel with their intrinsic capacitance and loss,

the loss being modeled as a resistor as in Figure 2.4b.

While tunnel barriers have a supercurrent branch, where the drive current is less than Ic, that

is lossless at DC, there seems to always be loss at RF frequencies due to defects in the tunnel

barrier or nearby dielectrics[25][30]. Research on this loss has suggested that minimizing dielectric

material around the device as well as reducing the area of the junction is desirable for long-lived

Josephson resonators. It is clear that for large area junctions (& 5 µm2) on sapphire the loss is

dominated by two-level systems (TLSs) present in the junction dielectric, as they tend to manifest

themselves as spectroscopic splittings whose coupling and loss may be readily quantified for a given

device. For these large junctions, the density of spectroscopically visible TLSs decreases as the area
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of the junction decreases, until it becomes rare to see any TLSs over the whole spectroscopy range

when the junction area . 1 µm2. Due to the time-intensive nature of spectroscopy scans, TLSs

coupled weaker than a few tens of MHz are often not seen with typical scan resolutions, although

they may still be present. These weakly coupled TLSs may be detected using a T1 vacuum Rabi

measurement, described in [31].

A single Josephson junction, without a shunting capacitor or geometric inductance, will make

a tilted-washboard potential when DC current biased, as shown in Figure 2.5, according to U(δ) =

(IcΦ0/2π)(cos δ − (I/Ic)δ), where δ is the gauge-invariant phase across the junction, and Ic is the

junction critical current[32][33]. The slope of the tilt increases with increasing bias I, and can be

thought of a ball on a tilted washboard in a viscous fluid[29]. The critical current Ic is analogous

to the point when the tilt is great enough for the ball to start rolling down the washboard.

Figure 2.5: Current-biased Josephson junction tilted washboard potential - When a Joseph-
son junction is DC current-biased the cosine potential (U(δ) = (IcΦ0/2π)(cos δ − (I/Ic)δ)) is tilted in
proportion to the applied current. When I ≥ Ic, the particle tunnels, rolling down the washboard
potential.
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2.2.1.2 Junction in an LC resonator

Placing a junction in parallel with an LC resonator makes it an anharmonic, tunable resonator

by combining the properties of both systems. The effective inductance of the Josephson junction

is given by[29]

LJ =
Φ0

2πIc cos δ
, (2.10)

and classically contributes to the total circuit inductance in parallel to the LC elements to give a

plasma frequency

ωp =
1√

LJLg
LJ+Lg

Cs

. (2.11)

Using the flux quantization condition δ = 2nπ − 2πΦex/Φ0 and the Josephson current equation

I = Ic sin δ one can write down the transcendental equation to find the phase δ at a given applied

flux Φex

δ = 2π
Φex

Φ0
− βL sin δ, (2.12)

where βL = 2πLgIc/Φ0 = Lg/LJ0 = EJ0/EL. Solving this equation gives a phase δ0 that can be

used in Equation 2.10 to get LJ and therefore a plasma frequency, giving the spectroscopy plotted

in Figure 2.3b.

In order to further understand this circuit, we find the potential landscape of this circuit. We

start by writing down the current expressions for each element, noting that Kirchhoff’s Voltage

Law says that V = VL = VC = VJ ,

IL = − 1

Lg

∫
V dt, IC = CsV̇ , IJ = Ic sin δ. (2.13)

We can use this in writing down Kirchhoff’s Current Law to get

IL = IJ + IC → CsV̇ + Ic sin δ +
1

Lg

∫
V dt = 0 (2.14)
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The Josephson Voltage relation, V = (Φ0/2π) δ̇, allows us to write this in terms of the junction

phase δ

Cs
Φ0

2π
δ̈ + Ic sin δ +

Φ0

2πLg

∫
δ̇dt = 0 (2.15)

Multiplying by Φ0/2π and doing the integral gives a constant of integration term (2π/Φ0)IDC =

(2π/Φ0)Φex/Lg which can be used to describe the current source as an external DC flux. Writing

this out gives

Cs

(
Φ0

2π

)2

δ̈ +
Φ0

2π
Ic sin δ +

(
Φ0

2π

)2 1

Lg
δ +

(
Φ0

2π

)2 2πΦex

LgΦ0
= 0. (2.16)

This equation is of the form mẍ + dU(x) = 0, the equation of motion for a 1-D particle in a

potential, with m ↔ Cs (Φ0/2π)2 and x ↔ δ. This analogy shows us that the potential of our

circuit is

U =

∫
dUdδ =

∫ (
Φ0

2π
Ic sin δ +

(
Φ0

2π

)2 1

Lg
δ +

(
Φ0

2π

)2 2πΦex

LgΦ0

)
dδ (2.17)

U = −Φ0

2π
Ic cos δ +

(
Φ0

2π

)2 1

2Lg
δ2 +

(
Φ0

2π

)2 2πΦex

LgΦ0
δ, (2.18)

with the resulting constant of integration dropped because it is just an energy offset. We can clean

up this equation using the Josephson energy EJ0 = (Φ0/2π)Ic and the geometric inductive energy

EL = (Φ0/2π)2 /2Lg to write

U = −EJ0 cos δ︸ ︷︷ ︸
UJJ

+ELδ
2︸ ︷︷ ︸

ULC

+EL4π
Φex

Φ0
δ︸ ︷︷ ︸

UΦex

. (2.19)

In this form the three parts of the potential are clear: the cosine junction contribution UJJ , the

parabolic LC resonator contribution ULC , and a linear slope piece from the external flux bias UΦex .

They are shown in Figure 2.6 both a) separated and b) together as the folded washboard potential

of the nonlinear oscillator.
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Figure 2.6: Potential of the nonlinear LC resonator - a) The separate pieces of the potential
equation sum to give b) the nonlinear resonator’s folded washboard potential.

The time-independent Schrödinger equation,

Ĥ|ψn〉 = En|ψn〉, (2.20)

allows us to solve for the steady-state quantum states in an arbitrary potential. |ψn〉 and En are

the eigenfunctions and eigenenergies of the system. Since the Hamiltonian for a particle in a one

dimensional potential, analogous to our anharmonic LC oscillator, is

Ĥ = − ~2

2m

d2

dX2
+ U(X), (2.21)

we may write the qubit Hamiltonian as

Ĥ = − ~2

2Cs

(
2π

Φ0

)2 d2

dδ2
+ U(δ). (2.22)
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Putting this in the time-independent Schrödinger equation gives

En|ψn(δ)〉 = −EC
d2

dδ2
|ψn(δ)〉+

(
−EJ0 cos δ + ELδ

2 + EL4π
Φex

Φ0
δ

)
|ψn(δ)〉, (2.23)

where EC = e2/2Cs. This equation is most easily solved numerically, using the techniques described

in [34] and [35]. The resulting eigenenergies and eigenstates are plotted with the potential for the

circuit parameters Φex/Φ0 = 0.65, βL = 3.0, EJ0/EC = 3600, and EL/EC = 600 in Figure 2.7.

The relative anharmonicity

αr = (E12 − E01) /E01 (2.24)

is, in a sense, a measurement of the addressability of qubit states; the greater the relative anhar-

monicity, the more distinct the energy levels. For the wells in Figure 2.7, α01−shallow = 3.6% and

α01−deep = 0.6%, so the lower two states in the shallow well are better separated that the lower two

states in the deep well. This is equivalent to saying that the shallow well is more anharmonic than

the deep well.

Figure 2.7: Biased nonlinear resonator potential and wavefunctions - a) The first 80 wave-
functions, found by numerically solving the time-independent Schrödinger equation. b) Detail, showing
the shallow well states. The wavefunctions are plotted with partial dotted lines and different colors for
clarity. Any potential energy offset has been removed.
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2.3 Phase qubits

The nonlinear resonator is the generalization of the phase qubit, which exists in the lower

two states of a single well. There is a great deal of flexibility in design of phase qubits because

the parameters of all three circuit elements may be tuned for operation in different regimes. Two

common regimes are seen in the metastable and stable phase qubit designs, shown in Figure 2.8. The

metastable qubit has a strong quadratic term from its geometric inductance that allows it to have

multiple wells available to it under the right flux bias conditions, giving rise to it’s “metastable”

nature. However, the stable phase qubit has negligible geometric inductance and is therefore a

simple cosine potential; the qubit does not have other unique wells available to it, giving it a more

“stable” nature.

2.3.1 Metastable qubit hysteresis and anharmonicity

The metastable phase qubit has the same Hamiltonian as the nonlinear Josephson resonator

described above, but has the constraint that βL > 1, where there exist bias conditions with more

than one well. As βL is increased, the maximum number of available wells increases in a stepwise

manner, though the number of available wells for a given βL depends on the applied flux. The

effect of βL is seen in Figure 2.9. The circuit is hysteretic any time there are two or more wells.

Figure 2.8: Circuit schematics for the metastable and stable phase qubits - The stable phase
qubit is a metastable phase qubit without a large geometric inductance Lg.
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Figure 2.9: Metastable qubit potentials for different βLs - Changing βL changes the maximum
number of available wells. The relative anharmonicity αr of each well is also reported, demonstrating
that the deep wells tend to be more harmonic than the shallow wells. Applied fluxes were chosen for each
plot to most clearly show the maximum number of available wells for each βL. The different βL values
were obtained by holding the junction critical current fixed and changing the geometric inductance.

Note that for the case where βL = 6, a particle leaving the left well may go to either the middle

well or the right well.

The relative anharmonicity αr of each well in Figure 2.9 shows that the deep wells have weaker

anharmonicity than the shallow wells. This suggests that the shallow wells are more desirable

places for the qubit to be defined since high anharmonicity corresponds to the 0 → 1 transition

being very separated from the other transitions in frequency space. A well separated transition is

more easily addressable, which is advantageous for quantum computing applications[7].

One way to visualize the βL-αr relationship is to plot the f01 spectroscopy for different values of

βL while holding EJ0 and EC constant, as in Figure 2.10a. It is clear that the spectroscopy curve

steepness increases with decreasing βL, which had the effect of increasing the qubit’s susceptibility

to flux noise. The change in αr with flux is also steeper. The spectroscopy plots in Figure 2.10a

have dots on each plot indicating at what flux the qubit will tunnel out of the |0〉 state 0.1% of

the time after sitting at the operate flux for 10 µs. Although the plots in Figure 2.10b suggest

large anharmonicities, the relative anharmonicity of the metastable phase qubit is rarely seen to

be & 7%, since the |1〉 state tunnels long before the |0〉 state begins to tunnel.
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Figure 2.10: The effect of βL on f01 spectroscopy and on αr - a) Numerically solving the
Schrödinger equation for the f01 transition at different values of βL shows that the slope of the spec-
troscopy increases as βL decreases. This leads to an increase in sensitivity to external flux noise. The
dots on each plot are where the qubit will tunnel out of the |0〉 state 0.1% of the time after sitting at
the operate flux for 10 µs. b) Also solving for the f12 transition gives the dependence of the relative
anharmonicity αr, whose steepness also increases as βL decreases. The same 0.1% points are marked,
but only for the low βL plots since at this point in the higher plots the |1〉 state is already gone.

2.3.2 Stable phase qubit (transmon)

The stable qubit, also known as the transmon, essentially eliminates the large geometric induc-

tance Lg in favor of a second Josephson junction, which mostly just suppresses the δ2 and δ terms

from Equation 2.19 (except for stray inductance from the wiring connecting the junctions, which is

small and usually ignored). There is also a gate capacitor Cg, whose name was inherited from its

charge qubit ancestry and is now simply the capacitance to the ground plane. These two features

combine to give the Hamiltonian

Ĥ = 4EC (n̂− ng)2 − EJ cos ϕ̂, (2.25)

where n̂ is the Cooper pair number operator, ng is the charge on the gate capacitor, ϕ̂ is the

operator for the gauge-invariant phase across the junctions, and EC = e2/2 (CJ + CB + Cg), where

CB is the shunting capacitor[36]. The EJ term is a combination of the two junctions, including
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asymmetries and the effect of the applied flux Φex:

EJ = (EJ1 + EJ2) cos

(
π

Φex

Φ0

)√
1 + d2 tan2

(
π

Φex

Φ0

)
, (2.26)

where d = (EJ2 − EJ1) / (EJ1 + EJ2) accounts for asymmetry between the junctions.

Because charge qubits had coherence times limited by charge noise, the stable phase qubit was

developed by increasing the ratio EJ/EC to be much � 1, making them charge insensitive and

allowing us to ignore the ng term in the Hamiltonian[37]. The charge insensitivity has the gate

capacitor Cg behaving simply as an external coupling capacitor, and could be neglected in the

Hamiltonian if desired. The EJ/EC � 1 design choice greatly increased energy relaxation and

decoherence times, though at the cost of a bit less anharmonicity. A schematic drawing of the

circuit, taken from [37], is shown in Figure 2.11a.

Figure 2.11: Stable phase qubit - a) Schematic drawing of the stable phase qubit, taken from
[37]. b) The traditional circuit diagram for the stable phase qubit. Combining the split junctions as in
Equation 2.26 allows us to redraw the circuit in a simpler form.
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While the stable phase qubit is often discussed including the gate capacitor, it can be ignored as

being simply an external coupling capacitor. The split junctions can be thought of as one junction,

as in Equation 2.26, simplifying the circuit greatly. The circuit is redrawn in Figure 2.11b, which

is just an LC resonator with the inductor replaced by a Josephson junction. Thus, exchanging

the inductive term of the LC resonator Hamiltonian (Equation 2.4) with the Josephson energy

−EJ cos δ gives us the new Hamiltonian

H = EC
d2

dδ2
− EJ cos δ. (2.27)

Note that the amplitude of the cosine in the junction term is modulated by EJ , which depends

on the external flux Φex according to Equation 2.26. This is essentially the nonlinear Josephson

resonator Hamiltonian (Equation 2.22), without the δ and δ2 terms, which is equivalent to setting

the geometric inductance to infinity. While the stable phase qubit does have some geometric

inductance because the loop containing the two junctions has dimension, the loop is small enough

that the δ and δ2 terms are negligible.

While this Hamiltonian may be solved analytically using the Mathieu functions[37], the result is

cumbersome to use numerically. Approximating the cosine potential using a Taylor expansion, fol-

lowed by time-independent perturbation theory on the Schrödinger equation, gives a more tractable

solution. The expanded cosine term

EJ cos δ ' EJ
(

1− δ2

2
+
δ4

24

)
(2.28)

gives a δ2 term that may be used as part of the unperturbed Hamiltonian since this allows a
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standard harmonic oscillator equation

H ' EC
d2

dδ2
+ EJ

δ2

2︸ ︷︷ ︸
H0

−EJ
(

1 +
δ4

24
δ

)
︸ ︷︷ ︸

H′

. (2.29)

The known harmonic oscillator Hamiltonian uses the ladder operators b and b†, which can be used

to write the approximated Hamiltonian

H '
√

8ECEJ

(
b†b+

1

2

)
︸ ︷︷ ︸

H0

−EJ −
EC
12

(
b+ b†

)4

︸ ︷︷ ︸
H′

. (2.30)

The first order corrections to this Hamiltonian are

E
(1)
j = −EC

12
〈j|
(
b+ b†

)4
|j〉 = −EC

12

(
6j2 + 6j + 3

)
(2.31)

and

|j〉(1) = −EC
12

∑
i 6=j

〈i|
(
b+ b†

)4 |j〉
Ei − Ej

|i〉. (2.32)

The first six approximated energy levels are plotted in Figure 2.12.

Figure 2.12: Stable phase qubit potential - First order corrected energies of the stable phase qubit’s
potential, found using time-independent perturbation theory on the expanded cosine term. Energy
offsets have been removed.
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2.4 Circuit Quantum Electrodynamics

Circuit quantum electrodynamics (cQED), the interaction of a superconducting qubit with

a quantum harmonic oscillator, has been demonstrated in both stable phase qubits[38][39] and

metastable phase qubits[40][41]. Stable phase qubits have been built directly into transmission

line resonators, which have been used as both a storage and state transfer element as well as a

measurement/readout mechanism. Metastable phase qubits have been coupled to both lumped

element resonators and transmission line resonators, and have also been used in state storage and

state transfer experiments. They have also been read out using lumped element resonators[42], but

until this work they had yet to be used to directly measure metastable phase qubits.

2.4.1 Jaynes-Cummings Hamiltonian

The simplest form of cQED is the two-level qubit system interacting with a harmonic oscillator

cavity, described by the Jaynes-Cummings Hamiltonian

HJC =
1

2
~ωqσz︸ ︷︷ ︸
Hq

+ ~ωr
(
a†a+

1

2

)
︸ ︷︷ ︸

Hr

+ ~g
(
a† + a

)
σx︸ ︷︷ ︸

Hint

, (2.33)

where ωq and ωr are the qubit and harmonic oscillator frequencies, g is the coupling between

them, σz and σx are the spin operators for the qubit state, and a and a† are the ladder operators

for the harmonic oscillator. Using the substitution σx = σ+ + σ− and taking the rotating wave

approximation to get rid of counter-rotating/anti-resonant (such as aσ−, which lowers both the

qubit and the cavity resonator states simultaneously) gives the simplified form

HJC =
1

2
~ωqσz + ~ωr

(
a†a+

1

2

)
+ ~g

(
a†σ− + aσ+

)
. (2.34)
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Use of the rotating wave approximation is justified by being in the strong coupling regime[43],

where the decay rate of the qubit is much less that the coupling between the qubit and the cavity,

and the coupling is less than the cavity resonant frequency (1/T1 � g � fcav). This Hamiltonian

may be solved exactly[43], having the eigenstates

|+, n〉 = cos θn|e, n〉+ sin θn|g, n+ 1〉, (2.35)

|−, n〉 = − sin θn|e, n〉+ cos θn|g, n+ 1〉, (2.36)

where g and e are the ground and excited states of the qubit and

θn =
1

2
tan−1

(
2g
√
n+ 1

∆01

)
, ∆01 = ωq − ωr. (2.37)

The eigenenergies of the system are

E±,n = ~ωr ±
~
2

√
4g2(n+ 1) + ∆2

01, (2.38)

with the ground state having the energy

Eg,n =
~∆01

2
. (2.39)

This spectrum is a ladder of two level systems, where the nth rung holds n+ 1 excitations in one of

its two states, with the exception of the lone ground state. The spectrum is plotted in Figure 2.13

for the |∆01| � g and |∆01| � g regimes. The two-level ladder rungs are clear in both situations.

The effect of the cavity on the qubit and the qubit on the cavity can be more clearly seen by

26



Figure 2.13: Jaynes-Cummings Hamiltonian energy levels - The energy level diagram given by
the Jaynes-Cummings Hamiltonian for a two-level system coupled to a cavity. The dressed states are
the solid lines, and form a ladder of two level systems where the nth rung holds n+ 1 excitations, with
the exception of the lone ground state rung. a) The |∆01| � g or dispersive regime, where the combined
system has a weak interaction. b) The |∆01| � g, where the levels are strongly shifted as the energy
levels from the non-interacting Hamiltonian become degenerate.

making the unitary transformation, following [36],

U = e
g

∆01
(aσ+−a†σ−). (2.40)

Expanding this to second order in g and applying it to our Hamiltonian gives the approximate

expression

UHU † ≈ ~
[
ωr +

g2

∆01
σz

]
a†a+

~
2

[
ωq +

g2

∆01

]
σz (2.41)

From this equation we can see that the cavity frequency is affected by the state of the qubit

according to

ω̃r = ωr ±
g2

∆01
, (2.42)
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commonly known as the dispersive shift. Rearranging the approximate Hamiltonian to

H ≈ ~ωr
(
a†a+

1

2

)
+

~
2

[
ωq + 2

g2

∆01
a†a+

g2

∆01

]
σz (2.43)

gives the expression for the effect of the cavity state, or number of photons in the cavity, and the

qubit frequency

ω̃q = ωq + 2n
g2

∆01
+

g2

∆01
, (2.44)

where the term 2ng2/∆01 is the AC Stark shift, and the g2/∆01 term is the Lamb shift. The AC

Stark shift allows an important cavity photon number calibration and will be discussed in the next

chapter.

2.4.2 The dispersive shift and the three level qubit

From above, the dressed state energy levels are shifted from the non-interacting Hamiltonian

energy levels by the amount ±n~g2/∆01, which depends on the qubit state (±). This dispersive

shift may be used to measure the state of the qubit by looking at the state of the cavity, or vice

versa, though the further the separation between the qubit and the cavity the smaller the shift

and the more experimentally challenging it may become to see. For one photon in the system, the

dispersive shift corresponds to a frequency change in the cavity of f = ±g2/∆01. This suggests

that it is advantageous to increase the coupling g in order to have a larger, and therefore more

visible, shift. While this is true, it also must be balanced with the fact that stronger coupling leads

to more loss from the qubit to the cavity. This loss, explained as the Purcell effect, is described in

Section 2.4.3.

This dispersive shift was derived above for a strict two-level system, ignoring the other energy

levels that are usually present in both the stable and metastable phase qubit. If the anharmonicity

of the potential is sufficiently high, then the influence of the upper levels significantly changes
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the dispersive shift for the lowest two levels[37]. To see this effect, derive the energy levels for a

three-level system coupled to a cavity, following [44]. The Jaynes-Cummings Hamiltonian can be

generalized to a three level system with the Hamiltonian

H = HQ + ~ωra†a+ ~g
(
aσ+ + a†σ−

)
, (2.45)

where

HQ =


0 0 0

0 ~ω01 0

0 0 ~ω02

 , σ− =


0 1 0

0 0 λ

0 0 0

 , σ+ =


0 0 0

1 0 0

0 λ 0

 , (2.46)

λ ≈
√

2, ω12 = ω02 − ω01 < ω01.

Label the eigenbasis as |q, n〉, where q = 0, 1, 2 represent the state of the 3-level qubit system and

n is the Fock state photon number for the cavity. Apply second order perturbation theory to the

energy states since first order gives no corrections, to get the total energies for the three different

qubit states, up to second order

E0,n ≈ n~ωr − n
~g2

∆01
, (2.47)

E1,n ≈ ~ω01 + n~ωr + (n+ 1)
~g2

∆01
− n~g

2λ2

∆12
, (2.48)

E2,n ≈ ~ω02 + n~ωr + (n+ 1)
~g2λ2

∆12
, (2.49)

where ∆12 = ω12 − ωr. If the cavity is operated in the single photon regime, then the dispersive

shift on the cavity due to the qubit state (limited to the 0→ 1 transition) is

∆ω = ±
(
g2

∆01
− g2

∆12

)
. (2.50)

The extra term in the three level shift has a dramatic effect on the shape of the shift curve, as
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seen in Figure 2.14. The size of the three level correction clearly depends on the 1→ 2 transition,

though if ω01 � ω12, then the correction is small and approaches the two level case, though it is

always negative. But if ω01 ≈ ω12, then the correction is significant. Thus the size of the correction

depends on the relative anharmonicity α = ω01 − ω12 of the qubit, making the correction essential

to modeling the dispersive shift of the small anharmonicity metastable phase qubit. Note that there

is a special regime where the dispersive shift for the three-level model is positive, and corresponds

to part of the “straddling regime,” where the cavity frequency is between the f01 and f12 transition

frequencies[37][45]. The behavior in this region is complex, and beyond the scope of this work.

For the qubit-cavity system modeled here the straddling regime is between about 0g and 4g. Also

indicated on the plot is a grey gradient where the accuracy of this theory is not guaranteed, since

it lies outside of the dispersive limit (|∆01| � g).

Figure 2.14: Dispersive shift - The dispersive shift on the cavity due to the qubit, comparing the
two- and three-level models for a metastable phase qubit with βL = 3. Note that the dispersive shift for
the three-level model is negative everywhere except in a small region between about 0g and 4g, part of
the “straddling regime.” The grey gradient in the middle of the plot is where the dispersive limit does
not apply.
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2.4.3 The Purcell effect

In 1946 Purcell suggested that a nuclear magnetic spin would be damped through a resonant

electrical circuit of quality factor Q, if it were placed inside the resonator and Q were sufficiently

small[46]. The free space decay, which is very long for such spins, would be shortened by the factor

3Qλ3
n/4π

2V , where λn is the transition wavelength and V is the resonator mode’s volume. This

effect later found applications in cavity quantum electrodynamics (CQED)[43] and now is being

seen in circuit quantum electrodynamics (cQED)[47].

As Purcell’s argument was based on Fermi’s Golden Rule for spontaneous emission, let us begin

there, following [37]. While the qubit energy is decaying into the cavity, the cavity energy is

decaying into the surrounding bath. This last decay path obeys the Hamiltonian

H = ~
∑
k

λκ

[
b†ka+ a†bk

]
, (2.51)

where a and a† are the cavity ladder operators, bk and b†k are the bath operators for mode k, and

λk is the coupling strength between the cavity and the bath. Fermi’s Golden rule states that the

spontaneous emission rate is γ = 2π/~ |〈f |H|i〉|2 ρ, where f and i are the final and initial states,

respectively, and ρ is the density of states. Since we are only interested losing a photon from the

cavity to the bath this expression may be simplified to

γκ = κ |〈f |a|i〉|2 , (2.52)

where all the coefficients have been folded into κ = ωcav/Qcav, the decay rate of the cavity to the

bath. Now we need the initial and final states of our system; initially there must be a photon in the

qubit only, then finally no photon anywhere since it was absorbed by the bath through the cavity.

For the two level atom the loss is γκ = κg2/∆2
01. For our three level atom the first two dressed
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state wavefunctions, up to second order, are

|0, n〉 ≈
(

1 +
g2n

2∆2
01

)
|0, n〉 − g

√
n

∆01
|1, n− 1〉+

g2λ
√
n2 − n

∆01 (∆01 + ∆12)
|2, n− 2〉, (2.53)

|1, n〉 ≈
[
1− g2

2

(
n+ 1

∆2
01

+
λ2n

∆2
12

)]
|1, n〉+

g
√
n+ 1

∆01
|0, n+ 1〉 − gλ

√
n

∆12
|2, n− 1〉. (2.54)

Plugging these into our Fermi’s Golden Rule expression gives

γκ = κ

∣∣∣∣g(n+ 1)

∆01

(
1 +

g2n

2∆2
01

)
− gn

∆01

[
1− g2

2

(
n+ 1

∆2
01

+
λ2n

∆2
12

)]
− g3λ2n(n− 1)

∆01∆12 (∆01 + ∆12)

∣∣∣∣2 , (2.55)

which recovers the two level qubit Purcell effect loss γκ = κg2/∆2
01 when there is only an excitation

in the qubit (n = 0).

The Purcell effect loss that the qubit sees is purely an external loss. Like Purcell’s nuclear

magnetic spin, the qubit’s total loss will be increased by the presence of the cavity coupled to a bath.

The qubit’s internal loss occurs through different mechanisms like the dielectric losses described at

the beginning of this chapter. Figure 2.15 is a plot of the Purcell model for a metastable phase

qubit-cavity system for different quality factor cavities. The loss is strongly enhanced near the

degeneracy, but asymptotically approaches the qubit’s internal decay time of T1 = 1000 ns.

While the external loss from the qubit through the cavity to the bath can be a dominant

mechanism, one should note that the Purcell effect is not just limited to designed electrical cavities.

It applies to any mode coupled to the qubit, so it is important that the qubit be well isolated from

spurious modes. This isolation usually takes the form of weak inductive coupling to and heavy

filtering on the qubit control lines. Ideally, the engineered cavity is the only Purcell decay path. A

tunable cavity is more flexible than a fixed cavity, as it may be tuned into resonance for intentional

decay or detuned for maximal qubit lifetime.

The Purcell effect suggests that it is best to have a weakly coupled, high quality factor cavity
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Figure 2.15: Purcell effect - The Purcell effect, showing loss from the qubit to the cavity for different
quality factor cavities and a background T1 = 1000 ns.

so that qubit loss is minimized over a broad range of detunings. However, one must also remember

that a more weakly coupled qubit-cavity system also requires longer timescales to transfer energy

and information. For instance, a qubit that is weakly coupled to the cavity will give small dispersive

shifts when being measured by the cavity, requiring more time to achieve the necessary signal-to-

noise required by a given experiment. A similar problem occurs when the cavity is weakly coupled

to the bath, in our case dominated by a microwave feedline used for measuring the cavity state. If

the coupling is weak between the cavity and the feedline, the long ring-up time for the cavity may

hide the dynamics of a particular experiment. Thus the experimenter must consider qubit-cavity

coupling, cavity-feedline coupling, qubit internal loss, and cavity external loss when designing a

circuit to carry out a desired experiment.
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3

Control and measurement of the

metastable phase qubit

3.1 Qubit control

The metastable phase qubit’s multi-well potential makes it an inherently more challenging

control problem than other types of superconducting qubits because the qubit must be reset after

each measurement in order to know which well is populated at the beginning of manipulation.

The potential control techniques that will be discussed are unique to the metastable phase qubit.

However, the general principles of qubit state control presented here may be applied to the other

superconducting qubit systems.

3.1.1 Potential control

As discussed in the previous chapter, the shape of the qubit potential may be manipulated

by an externally applied flux Φex. For βL . 4.7 there are places where the potential is single

valued as well as places where the qubit is double-valued, as shown in Figure 3.1. The single-

valued location is used for resetting the qubit to a known state, so this is labeled the “reset”

34



Figure 3.1: Metastable phase qubit potentials - Three metastable phase qubit potentials, one
single-valued for resetting the qubit, one symmetric double-valued for reading out the measurement
results, and one asymmetric double-valued for operating the qubit. The two energy levels that make up
the qubit are shown in magenta. For a qubit with βL = 3.0.

potential. While any well may be used for qubit state manipulations, we have already seen that

the higher anharmonicity of the shallow well in the double-valued potential is most desirable for

quantum computation operations because of its relatively high anharmonicity (Section 2.3.1), and

so this will be called the “operate” potential. After qubit manipulations are complete the state is

measured using a fast flux pulse (described in detail below) that is calibrated to cause a tunneling

event to the deep well only if the qubit was measured in the |1〉 state. The symmetric double well

potential, or “readout” potential, has wells that are separated by a flux quantum Φ0, as well as

a large barrier between the wells. The two states represented by the two wells correspond to the

direction of circulating current in the qubit loop, and the large barrier keeps these states separated

over long time scales. The Φ0 difference between the circulating current states provides plenty of

room for distinguishing between the two using flux magnetometry, providing the readout device is

sufficiently coupled to the qubit.

In order to properly operate a metastable phase qubit it is important to know what applied

flux corresponds to the symmetric single-valued well, the symmetric double valued well, and where
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the tunneling event happens. These values are found by measuring the circulating current in the

qubit at different flux biases using a magnetometry measurement, yielding data commonly referred

to as “steps.” The flux applied to the qubit inductive loop is swept while the total flux in the

loop is measured by a SQUID. Figure 3.1 shows the qubit well drifting along the δ−axis as the

external flux is changed, moving its minimum value δ0. As the flux moves the potential from being

multi-welled to being single-welled again a tunneling event will occur and a discontinuous jump in

the phase will occur as the previously occupied well disappears. The position of the minimum value

of the potential well can be found by setting the derivative of the potential to zero and solving for

δ

dU = EJ sin δ + 2ELδ + EL4π
Φex

Φ0
= 0→ sin δ = −2

EL
EJ

(
δ + 2π

Φex

Φ0

)
. (3.1)

Since this is a transcendental equation there will be multiple values for δ when the potential is

multi-welled, so the correct value δ0 must be chosen. One way to choose the correct value is to

start in a single valued potential that only has one extremum and then always choose the δ value

closest to the last one. As long as the flux steps are small enough, this method should always give

the δ0 of the same well, until that well disappears and the minimum phase is single-valued again

in the next well. These discontinuities are the steps. The current in the qubit loop can be found

using the Josephson current relation with the found value for δ0, I = Ic sin δ0. The minimum value

δ0 and the current in the qubit are plotted in Figure 3.2. The single-valued potential that can

be used for resetting the system occurs at the integer multiples nΦex/Φ0, while the double-valued

potential that can be used for readout occurs at the half-integer multiples (n/2)Φex/Φ0. While

this model shows discontinuities occurring whenever a well disappears at |Iqubit| = Ic, tunneling

of the state to the deep well should occur sooner in real systems. Where the tunneling happens

depends on the loss in the system, the temperature of the system, and the time spent in a given

well configuration[48][32]. If we approximate the metastable well as a cubic potential, the tunneling
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Figure 3.2: Metastable phase qubit steps - a) The phase δ0 corresponding the the well minima
as a function of applied flux Φex, showing the discontinuities when wells disappear. b) The current in
the qubit calculated from δ0. For both plots the symmetric single-valued potential (reset) occurs at the
integer multiples nΦex/Φ0, and the symmetric double-valued potential (readout) occurs at (n/2)Φex/Φ0.
The distance between tunneling events is Φ0, while the length of an entire step is 2ΦC .

rate is

Γ =

√
120π7.2

∆U

~ωp
e
−7.2 ∆U

~ωp

(
1+0.87Q+0.052

(
1+

2πΦex
Φ0
−δ0

tan δ0

))
, (3.2)

where ∆U is the barrier height (the distance from the bottom of the metastable well to the top

of the barrier), ωp = 1/
√

(Lg ‖ LJ0)C is the plasma frequency of the circuit, and Q = ωpRC is

the quality factor of the circuit. The spilling points can be found more precisely by resetting the

qubit, moving to an operate flux that is swept to see if the qubit tunnels there, then moving to the

readout flux to readout the state. The process is shown schematically in Figure 3.3a. The resulting

tunneling probability curve or “S-curve” is plotted in Figure 3.3b. Taking this curve at either end

of a step and at the edge of an adjacent step provides enough information to both calibrate the flux

axis to a magnetic flux quantum Φ0, since the steps are periodic in Φ0 due to the flux quantization

of the loop, as well as determining βL from the step length 2ΦC .

The flux axis is readily calibrated since the current applied to the bias line can be easily

measured from the room temperature electronics, and Φ0 is read off from the steps data as the

difference in flux between tunneling events. The coupling between the bias line and the qubit can

then be easily calculated using M = Φ0/I. Likewise, the hysteresis is found simply by substituting
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Figure 3.3: Metastable phase qubit S-curve - a) Flux waveform for measuring the S-curve by
sweeping the operate flux. b) The S-curve moves continuously from the untunneled to the tunneled
state. The little spikes on the S-curve are resonant tunneling events, potential shapes where the ground
state energy level in the shallow well is degenerate with a deep well energy level and tunneling is
enhanced.

EL/EJ = 1/2βL = − cos δ/2 into Equation 3.1, and using the length from the middle of the step

to its edge ΦC to write

tan δ − δ = 2π
ΦC

Φ0
. (3.3)

This transcendental equation may be solved for δ, which can be plugged into βL = −1/ cos δ. Since

the design value for the geometric inductance Lg is usually very close the actual measured value,

one can then calculate the junction inductance LJ0 = Lg/βL.

3.1.2 Bloch sphere manipulations and tomography

Since qubits are two-level quantum systems used for computations that may require any number

of manipulations, it is useful to visualize a qubit state as a vector on the three-dimensional Bloch

sphere[49], shown in Figure 3.4. The vertical z−axis contains the two eigenstates of the system,

where |0〉 is the ground state and |1〉 is the excited state. The Bloch vector can be written

mathematically as

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉. (3.4)
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Figure 3.4: Mapping the two-level system to the Bloch sphere - The state of a qubit, a two-level
quantum system, can be represented as a vector on the Bloch sphere.

Arbitrary control over the qubit state means having the ability to move the Bloch vector to any

location on the Bloch sphere. This is accomplished using a combination of microwave and flux

pulses. Flux pulses cause rotations about the z−axis, with the sign of the pulse determining the

direction of rotation and the amplitude of the pulse determining the rate of rotation. Microwave

pulses cause rotations about an axis in the xy−plane, with the phase of the microwave pulse

determining which axis and the amplitude determining the rate of rotation. Duration of both types

of pulse determines the total angle of rotation. A simple example of state manipulation is seen by

driving Rabi oscillations on a two level system separated by E01 = ~ω01, using a microwave pulse

that oscillates the externally applied flux at frequency ω01 = (E1 − E0) /~. Any two-level system

with an oscillating potential has the Hamiltonian[50]

H = H0 + U(t) =

 E0 Aeiωt

Ae−iωt E1

 , (3.5)

where A is the amplitude of oscillation. This Hamiltonian has an exact solution. For the driven

state at time t, |ψ〉 = c0(t)|0〉 + c1t|1〉 and the probability for being found in each of these two
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states is given by Rabi’s formula,

|c1(t)|2 = P|1〉 =
A2/~2

A2/~2 + (ω − ω01)2 /4
sin2

√A2

~2
+

(ω − ω01)2

4
t

 ,

|c0(t)|2 = P|0〉 = 1− |c1(t)|2 . (3.6)

This oscillation between the |0〉 and |1〉 states amounts to a rotation of the Bloch vector around

the x−axis (ϕ = 0), as in Figure 3.5a. This rotation continues as long as the drive is applied.

Figure 3.5: Driven Rabi oscillations - a) Bloch sphere representation of driven Rabi oscillations,
where the Bloch vector rotates about the x−axis when driven on resonance. b) While Rabis are driven
the Bloch vector’s axis of rotation changes due to dephasing, equivalent to arbitrary rotations about the
z−axis. c) Rabi oscillations at different drive frequencies, calculated from Rabi’s formula and including
the decay from T ′. d) Line cut of c), showing that after a long duration pulse, the probability of being
in the |1〉 state approaches 50%.
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From looking at Rabi’s formula we can see that the frequency of this oscillation is

ΩRabi =

√
A2

~2
+

(ω − ω01)2

4
. (3.7)

On resonance, ΩRabi = A/~, so ΩRabi is directly proportional to the drive amplitude A. Off

resonance, ΩRabi increases and the amplitude of the oscillations decreases.

The Rabi oscillation is further modified in the presence of 1/f noise and energy decay channels.

Low frequency noise (compared to ω01) on the flux bias line causes arbitrary rotations in ϕ around

the z−axis while the flux drive is rotating around the x−axis only, shown in Figure 3.5b, leading

to dephasing[51]. The dephasing rate will here be noted as T2. When a given x−rotation is much

longer than T2 and is repeated many times, these arbitrary rotations sum to put the Bloch vector

always along the equator, in the xy−plane, corresponding to a |1〉−state occupation probability

P1 = 50%. The dephasing is also accompanied by the energy decay rate T1, which describes the

qubit’s resonant energy loss to the environment. Taken together these two define a decay constant

T ′ for the Rabi oscillation envelope[52][53]

1

T ′
=

1

2T1
+

1

2T2
, (3.8)

and the combination of this decay constant with Rabi’s formula is plotted in Figures 3.5c and 3.5d.

The decay envelope around the Rabi oscillations seen in Figure 3.5d suggests that there is a finite

timescale during which qubit manipulations may be reliably done. Thus, measurements of T1 and

T2 are important for understanding the amount of time available to manipulate the qubit state for

performing quantum computations.
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3.1.3 T1 measurement and the π−pulse

The energy decay rate T1, also known as the longitudinal decay rate because it decays around

an xy−plane axis, can be measured by preparing the qubit in the |1〉 state by using a π−pulse and

watching the state decay back down to the |0〉 state, as seen in Figure 3.6. The T1 decay follows

the functional form P|1〉(t) = e−∆t/T1 , where ∆t is the delay between the π−pulse and the measure

pulse.

The π−pulse is any drive pulse of appropriate duration and amplitude that moves the qubit

from the |0〉 state to the |1〉 state, and is best accomplished using a Gaussian shaped pulse[54].

Because ΩRabi depends on the drive amplitude A, there is a continuum of amplitudes and drive

durations that will give a π−pulse. From Equation 3.6 we can see that on resonance, a π−pulse

happens when

2
A

~
t = π. (3.9)

Figure 3.6: T1 measurement - a) The T1 measurement involves putting the qubit in the |1〉 state by
applying a π−pulse, then waiting a time ∆t, then measuring the state at different values of ∆t. b) The
calculated decay curve for a T1 measurement. c) The pulse sequence for the T1 measurement.
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In a perfect two-level system without loss the π−pulse may be chosen to have any combination

of amplitude and duration that satisfies Equation 3.9. But we have already seen that the potential

usually has more that just two energy levels, and thus care must be taken to only address the

bottom two. This means that our π−pulse cannot have significant frequency components that

could excite other transitions like the f12 or the two-photon f02/2[55]. For the long pulse (120 ns)

in Figure 3.7 the FFT shows that it will not excite the |2〉 state transitions, which represent a

qubit with relative anharmonicity αr = 1%, since the power spectral density at those frequencies

is in the noise floor, at least 80 dB below the f01 pulse. Since the level spacing, and hence αr, is

different for each DC external flux, the spectral components of the π−pulse must be considered at

each flux. Note that if the power spectral density (PSD) of the pulse at f02/2 is just 30 dB below

the PSD at f01, the f02/2 Rabi period will be 1000 times longer than the f01 Rabi period, making

its population by stray spectral components negligible.

Because of this frequency separation issue it may be tempting to choose a very long π−pulse,

like the one in Figure 3.7, so that the pulse is spectrally very narrow. But the energy decay (T1) and

dephasing (T2) processes described above are also modifying the path of the Bloch vector while the

slow π−pulse is applied, and if their time scales are shorter than the π−pulse duration, the qubit

will never be able to reach the |1〉 state. Thus it is important to make the π−pulse long enough

Figure 3.7: π−pulse frequency components - a) 120ns Gaussian π−pulse in the time domain at
7.44GHz. The Gaussian envelope (red) was measured on an oscilloscope and the 7.44GHz sine wave
was added. b) FFT of the 7.44GHz, 120 ns Gaussian pulse. For a relative anharmonicity αr = 1%, the
other |2〉 state transitions are clearly not going to be excited by this pulse as they are in the noise floor.
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to exclude undesirable transitions, yet still short enough to make the T1 and T2 effects negligible.

3.1.4 Ramsey fringe measurement

The dephasing time T2, also known as the transverse decay time because it is the decay rate

about the z−axis, is measured using two π/2−pulses, with a z−pulse and delay ∆t between them,

also known as a Ramsey experiment. The π/2−pulse is a 90◦ rotation about the x−axis, as shown

in Figure 3.8a. During the delay time the qubit rotates in the xy−plane with a frequency ωz,

proportional the amplitude of the z−pulse, and then a second 90◦ rotation (π/2−pulse) about the

x−axis is applied and the state is measured.

The pulse sequence is shown in Figure 3.8b. If the vector doesn’t rotate at all during ∆t, or

if ∆t is sufficiently short to make the dephasing insignificant, the second π/2−pulse will place the

qubit in the |1〉 state. If the vector rotates to be along the x−axis during ∆t, the second π/2−pulse

will leave the state in the xy−plane. If the vector ends up in the −y direction after ∆t, the second

π/2−pulse will rotate it to the |0〉 state. While the z−pulse should give deterministic oscillations,

over long enough time scales dephasing noise dominates the phase angle φ. When the phase position

is randomized by this phase noise this rotational bisymmetry gives P|1〉 = 50% as the average for

a large number of measurements. Thus the Ramsey protocol gives a measurement of the timescale

for dephasing, with the functional form[56] P|1〉 = 0.5 cos (ωzt) e
−(t/T2)2

+ 0.5, which is plotted in

Figure 3.8c for the detuning indicated in the 3D plot by the grey dotted line.

3.1.5 Tomography

A practical summation of the Copenhagen interpretation of quantum mechanical measurement

can be found in Dirac’s statement “a measurement always causes the system to jump into an

eigenstate of the dynamical variable that is being measured”[57]. Taken at face value, this suggests

that although a qubit’s Bloch vector may point anywhere on the surface of the Bloch sphere, it may
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Figure 3.8: Ramsey fringe measurement - a) The T2 measurement starts by applying a π/2−pulse
to put the qubit in the xy−plane, then is followed by a z−pulse for a time ∆t. The Bloch vector rotates
in the xy−plane with a frequency ωz proportional the amplitude of the z−pulse. A π/2 pulse is again
applied, rotating around the x−axis by 90◦, then the state is measured. The case shown is for a null
z−pulse and no dephasing. b) Ramsey fringe pulse sequence. c) Ramsey fringes calculated using the

functional form P|1〉 = 0.5 cos (ωzt) e
−(t/T2)2 + 0.5.
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only be measured to be in either the |0〉 or |1〉 state and nothing but the final, measured state of the

system may be known; all information about the vector is lost. While this statement is true if only

one measurement is made on a given prepared state, by preparing and measuring the same state

over and over again one can learn something about the prepared state. Remembering that any

wavefunction |ψ〉 may be written as the sum of eigenvectors in any basis, our qubit’s wavefunction

can be written in the energy basis as

|ψ〉 = c0|0〉+ c1|1〉, (3.10)

where P|0〉 = |c0|2
(
P|1〉 = |c1|2

)
is the probability of a measurement result being in the |0〉 (|1〉)

state. If repeated enough times P|1〉 = 1−P|0〉 can be well known and tell us the angle θ on the Bloch

sphere (Figure 3.4), yet the phase ϕ is still unknown. This angle can be found using a tomographic

measurement technique. Typically, tomography involves measuring the prepared state in different

bases, but the same thing can be accomplished by doing an extra known rotation about the x−

and y−axis before measurement. Because the extra pulse is known, the position of the qubit state

can be deduced from the measurement result. Figure 3.9 schematically shows the tomography

procedure. The state to be measured is prepared, then one of three tomography pulses is applied.

The three pulses are labeled I, 90x, and 90y. I is a null pulse, nothing, so that the angle θ can

be measured. 90x and 90y are just π/2−pulses, though their phases differ by 90◦. The 90x pulse

rotates the state about the x−axis by 90◦ and the 90y pulse rotates the state about the y−axis

by 90◦. After performing these rotations, a measurement projects these states onto the z−axis.

For a 90◦ rotation about x−axis, the projection onto the z−axis gives the same result as if the

measurement had been projected onto the y−axis. Likewise, a 90◦ rotation about y−axis followed

by a projective measurement onto the z−axis gives the same result as a projective measurement

along the x−axis. These two extra rotations, 90x and 90y, are nominally equivalent to being able

to measure along the y− and x−axes, respectively, thus giving full knowledge of the location of the
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Figure 3.9: Tomography of an arbitrary state - The Bloch vector can be completely described by
doing tomographic measurement, which entails doing one of three pulses followed by a measurement: I
(no pulse), 90x, 90y. The final state after the tomography pulse is applied is the solid red arrow, and
the initial state is a dotted red arrow.

Bloch vector. Tomographic measurement has been previously implemented in metastable phase

qubits[58].

In order to find precisely the pulses to be used for tomography, one may sweep the phase of the

second pulse and use the result as a calibration, as long as the initial states are well known. The

prepared states |0〉, |1〉, (|0〉+ |1〉) /
√

2, and (|0〉+ i|1〉) /
√

2 can be explored using a tomography

pulse whose phase is swept from 0 to 2π. Calculated results for the four different states are plotted

on polar plots in Figure 3.10, where the phase is the polar angle and amplitude is the radial variable.

This continuous change of phase sweeps the axis of rotation of the tomography pulse through the

entire xy−plane. At each phase, the tomography pulse amplitude is also swept through more than

one Rabi period, so the entire Bloch sphere is mapped for each prepared state. Note that sweeping

pulse amplitude may be replaced with sweeping time, though the energy relaxation time must be

sufficiently long for clear data. For the initial state |0〉, rotations about any axis in the xy−plane

for increasing rotation times (or pulse amplitudes) gives identical driven Rabi oscillations. The
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Figure 3.10: Tomography sweep - Calculated tomography, sweeping the tomography pulse ampli-

tude and phase, of the initial states |0〉, |1〉, |0〉+|1〉√
2

, |0〉+i|1〉√
2

. The initial states are shown in the Bloch

sphere above each plot. The pulse sequence is shown schematically below.

|1〉 state plot is the inverse of the |0〉 state plot, as it is simply Rabi oscillations initiating in the

|1〉 state instead of the |0〉 state. The (|0〉+ |1〉) /
√

2 and (|0〉+ i|1〉) /
√

2 state plots are a little

more complex since when the phase passes through the axis upon which the prepared state lies no

change occurs. Rotation about the other axis has the effect of moving the state to either the |0〉 or

|1〉, depending on the sign of the vector.

3.2 Tunneling measurement and flux-state readout

The qubit manipulations that have been discussed in this chapter may be applied to any super-

conducting qubit, since the two-level system manifold and Bloch vector representation is common

to all of them. While there are measurement/readout schemes that also may be common to all of

them, here we describe a tunneling measurement/flux-state readout scheme that is unique to the

metastable phase qubit, thanks to the small tunnel barrier between its two wells.
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3.2.1 Tunneling measurement

Tunneling measurement is a single-shot, destructive measurement method that takes advantage

of the multi-well nature of the metastable phase qubit. After the qubit control manipulations have

completed, a fast flux pulse is applied on the order of nanoseconds. This measure pulse is calibrated

to cause the qubit to spill into the adjacent well ∼95% of the time if it is measured to be in the

|1〉 state, and ∼5% of the time if it is measured to be in the |0〉 state. A schematic picture of the

tunneling measurement process is shown in Figure 3.11. The blue curve is the operate potential

where the qubit has been manipulated, and the red curve is the potential well during a measure

pulse. When a tunneling event occurs the deep well states are occupied; in Figure 3.11 only the

two qubit energy levels are plotted.

3.2.2 Ring-down

After a tunneling event, the system is in an energy state far above its ground state, and therefore

can be thought of classically as a particle oscillating at high amplitude in the deep well. This

Figure 3.11: Tunneling measurement - A schematic picture of the tunneling measurement process.
The fast measure pulse is calibrated so that when the qubit state is measured to be in the |1〉−state,
then a tunneling event will occur ∼95% of the time, and ∼5% of the time a tunneling event will occur if
it is measured to be in the |0〉 state. The blue curve is a potential well shape before the measure pulse
is applied, and the red curve is the potential well shape while the measure pulse is applied. Only the
qubit energy levels are shown.
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Figure 3.12: Voltage pulse from ring-down - As the particle decays in the deep well it is emitting
a chirped voltage pulse to whatever is connected to it, altering any quantum systems. The pulse starts
at low frequency and moves to high frequency.

ringing can be thought of classically since the deep well potential is nearly harmonic (αr < 1%)

and has many states. The oscillation changes frequency as it decays since the well is anharmonic,

such that the frequency increases as the amplitude of oscillation drops, creating a chirped voltage

pulse that often spans several GHz and can effect other quantum systems such as coupled qubits

or cavities[59][60][61]. The decay process is shown as the classical particle ringing down in Figure

3.12. Quantum mechanically, the state is decaying by spontaneous emission from one energy level to

another in the deep well; the deep well has so many states that it may be thought of as a continuous

decay. Solutions to the ring-down radiation problem for multi-qubit systems have included making

all measurements simultaneously[59] as well as using narrow linewidth cavities as coupling elements

between qubits while keeping the unmeasured qubit(s) detuned from the cavities[61].

3.2.3 Retrapping

The tunneling measurement relies on a rapid energy decay in the deep well during the measure

pulse to keep the state from tunneling back into the shallow well and causing a false readout of the

|1〉 state as a |0〉 state. If the measure pulse finishes and moves the potential back to its original

shape before the tunneled state has sufficiently decayed, the state could tunnel back into the shallow

well, shown schematically in Figure 3.13. Known as retrapping, this behavior artificially lowers the
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Figure 3.13: The retrapping process - If the particle tunnels, as in a), and the measure pulse moves
back to the operate position more quickly than the decay in the adjacent well can move the state below
the barrier, as in b), then there is a significant probability that the state will move back to the qubit
well. This will make a |1〉−state measurement falsely register as a |0〉−state, and P|1〉 = 1 will not be
realizable at any measure pulse amplitude.

maximum probability achievable for S-curve measurements. Figure 3.14a shows the anti-retrapping

measure pulse’s effect on retrapping. One solution to this problem is to use an asymmetric anti-

retrapping measure pulse. Instead of a hard pulse that is symmetric in time, the anti-retrapping

measure pulse rises quickly, then decays slowly to give the state in the right well time to decay to

the ground state (Figure 3.14b). While the anti-retrapping measure pulse was not necessary for

devices with lifetimes shorter than a few hundred nanoseconds, it has been crucial for longer-lived

devices. The retrapping problem suggests the need for a fast, broadband, tunable damping solution.

Figure 3.14: The anti-retrapping measure pulse - a) While a fast, symmetric measure pulse
will allow retrapping with long-lifetime qubits, an asymmetric anti-retrapping measure pulse keeps a
tunneled |1〉−state measurement in the appropriate well. b) The potential slowly changes from the
shallow measure pulse to the deep operate potential.
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3.2.4 Tunneling advantages and disadvantages

Using tunneling measurement with metastable phase qubits has been successful because it

provides a single-shot, high-fidelity quantum measurement[55] that can be later read out from a

stable double-well configuration. Also, since there is no measurement being conducted on the qubit

during manipulation (besides environmental loss, which can be thought of as a continuous weak

measurement that is always present), the effect of such “Heisenberg microscope” measurements [43]

need not be taken into account (such as the AC Stark shift when performing dispersive measurement

with a cavity[62]), simplifying the qubit dynamics. Yet tunneling measurement of the metastable

phase qubit has a few major flaws. First, crosstalk between two coupled qubits during measurement

has been observed both through a coupling capacitor [59] and through a cavity coupling them

[61]. Such crosstalk suggests that either great efforts need to be made to dynamically decouple

qubits when one is being measured, or accept that all the coupled phase qubits must be measured

simultaneously, placing significant limitations on their utility in quantum information processing.

Second, tunneling measurements are destructive, requiring a potential well reset pulse afterwards

and precluding the use of measured qubits in subsequent operations. Third, the readout of the

tunneling measurement requires moving the qubit flux to the double-well configuration for the

readout of its flux state. This is another step that must be added to the reset and operate steps

and thus increases the total time required to do one manipulation/measurement cycle.

3.2.5 Standard DC SQUID readout

3.2.5.1 Schematic description

Coupling a DC SQUID to a metastable phase qubit allowed the fast measurement scheme [63]

that has become the standard method of metastable phase qubit operation. The long term stability

of the symmetric double well potential allowed the readout of DC SQUIDs using a simple, slow

current ramp. Figure 3.15 is a wiring schematic for a standard metastable phase qubit coupled to
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Figure 3.15: Qubit/DC SQUID circuit schematic - A metastable phase qubit coupled to a DC
SQUID, which used for readout. The DC SQUID is driven with a current ramp, and a threshold detector
watches the voltage to look for a switching event.

a DC SQUID readout, including qubit control lines.

As already described above, after the fast measure pulse the flux bias is changed to the stable

double-well potential at Φex/Φ0 = 0.5, shown in Figure 3.16. This separates the result of the fast

measure pulse, effectively freezing it, so it may be read out on much longer time scales than the

stability of the previous metastable well. Since the two wells are separated by a flux quantum, an

inductively coupled DC SQUID is used to distinguish whether the phase particle is in the left or

right well, corresponding to having measured the logical |0〉 and |1〉 qubit states.

The DC SQUID is efficiently designed using three Josephson junctions with different critical

currents such that its response to applied flux is asymmetric, with flux sensitivity at zero applied

flux, as seen in Figure 3.17. If there were only two symmetric junctions there would be no flux

sensitivity at zero flux bias, necessitating another flux bias line to offset the DC SQUID to a

flux-sensitive place.

Figure 3.16: Qubit state readout - The qubit is biased to a stable double-well potential, separated
by a flux quantum Φ0 for readout. The current to the SQUID is ramped during readout, looking for
the tunneling event that will describe the double-well flux state.
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Figure 3.17: DC SQUID flux response - a) A DC SQUID with 3 different Josephson junctions has
an asymmetric flux response curve b), with flux sensitivity at zero applied flux (blue dotted line).

The temporal sequence of qubit initialization, operation, measurement, and readout with the

DC SQUID is shown in Figure 3.18, and is largely the same as the basic method outlined in Section

3.1.1. The qubit is reset in a single-well potential, moved to the operate flux where operations

are performed, then the qubit is measured using a fast flux pulse. After moving to the symmetric

double well potential, the DC SQUID flux readout is accomplished by ramping the applied current

until the SQUID switches to its voltage state. A timer is started at the beginning of the current

ramp, and stops when the switching event happens and the voltage across the SQUID crosses a

preset threshold. The switching event will happen earlier if the qubit is in the flux state that is

Φ0 greater than the other, since the SQUID’s critical current will be suppressed by the extra Φ0 of

flux.

3.2.5.2 Advantages and disadvantages

DC SQUID readout has been very successful for systems of a few qubits, as it provides stable,

high signal-to-noise single-shot readout using low-cost electrical components. But as the supercon-

ducting phase qubit community moves toward many-qubit quantum processing, it is clear that the

DC SQUID will be prohibitive for the following reasons. First, the DC SQUID is directly coupled

to the outside world, and thus is a potential source of noise. The noise seen by the qubit from the
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Figure 3.18: Tunneling readout sequence - The qubit is initialized by moving the particle to the
reset well. Qubit operations are carried out at the operate flux, and fast measurement happens directly
after. The qubit is then moved to the stable double well for readout, where the DC SQUID current is
ramped until switching. The time between when the timer starts and when the switching occurs reveals
the qubit flux state, and therefore the result of the measurement.

SQUID can be decreased by careful design and bias tuning [64], and by decreasing their coupling.

Yet if they are too decoupled, the flux quantum change in the qubit loop will be a very flux small

change in the DC SQUID loop, and the two states will be indistinguishable, within the noise of the

switching DC SQUID. Thus, the switching noise is a fundamental limitation of the DC SQUIDs,

setting the limit on how much it can be decoupled from the qubit. Ideally, the qubit would be

completely decoupled from its environment until the time of readout, so decoupling the readout

device as far as possible from the qubit is desirable.

The switching current readout method used with DC SQUIDs has the further disadvantage

that it emits Josephson radiation while in the voltage state according to fJ/V = 2e/h = 483.6

THz/V. This radiation has the potential to disturb adjacent qubits whose states one does not wish

to perturb while reading out the original qubit, so the DC SQUID is less practical for multiple qubit

processors that need to measure qubits at different times. Additionally, because the DC SQUID is

directly coupled to the room temperature world and thus requires heavy filtering to minimize noise,

there is a limit on how quickly the readout can be done, set by the filtering. Typical readout times
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are in the tens of microseconds, much longer than the T1s of even the best metastable phase qubits.

Finally, the dependance of the DC SQUID on three Josephson junctions quadruples the number

of junctions per qubit that must be engineered. Even in a stable junction fabrication process,

variability in the fabrication of Josephson junctions makes it desirable to minimize the number of

junctions necessary to build a device.

3.2.6 Tunable cavity readout

3.2.6.1 Schematic description

The tunable cavity has a very similar circuit schematic to the metastable phase qubit 3.19, and

is similar in behavior. The main difference is that the ratio of the geometric inductance to the

Josephson inductance (βL) is less than 1, making it single valued at all flux biases. In contrast, the

metastable phase qubit has βL > 1, making it hysteretic with multiple potential wells at some or

all flux biases. Regardless of βL, the tunable cavity is always periodic in Φ0, as seen in Figure 3.20.

Another significant difference between the metastable phase qubit and the tunable cavity is the

type and amount of coupling to the microwave line.

Figure 3.19: Qubit/tunable cavity circuit schematic - The circuit schematic for the tunable
cavity coupled to a metastable phase qubit
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Figure 3.20: Tunable cavity spectroscopy for different βLs - Tunable cavity spectroscopy for a)
βL = 0.95 (single valued) and b) βL = 2.00 (hysteretic).

While our phase qubits are typically weakly coupled with an external quality factor ofQext ∼ 106

for isolation, the tunable cavities reported here are coupled strongly with Qext = 200−1000 so that

they respond quickly. They are also coupled to the microwave feedline through a single capacitor

on a tee, so they appear as Lorentzian dips when making a transmission measurement. The form

of the S21 scattering matrix element for a Lorentzian dip is

S21 =
S0 + 2iQω−ω0

ω0

1 + 2iQω−ω0
ω0

, (3.11)

where the measured quality factor Q and the dip height S0 can be written in terms of internal and

external quality factors using

1

Q
=

1

Qint
+

1

Qext
, S0 =

Qext
Qint +Qext

. (3.12)

The internal losses include dielectric losses in the shunting capacitor and Josephson junction, while

the external losses occur through the coupling capacitor to the 50Ω microwave feedline. These

are largely independent loss channels, and may be somewhat engineered, although the mechanisms

of internal loss are still being explored and are not completely controllable yet. However, the

external loss through the coupling capacitor to the feedline may be readily designed by changing
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Figure 3.21: Dip resonator quality factor - The internal and external quality factors, Qint and
Qext, in a dip resonator change the shape of the resonance somewhat independently. As the Qint
increases the dip gets deeper without its width changing much. When Qext is increased, the dip narrows
significantly, without losing much depth. Note, however, that changing Qext affects the dip depth more
than changing Qint affects the dip width.

the value of the coupling capacitor. The effects of different internal and external quality factors on

the dip resonance are shown in Figure 3.21. During measurement and readout the cavity is simply

a means for transferring information about the qubit state to the outside world. It is therefore ideal

to have no internal loss (Qint →∞) and use the external loss to control the speed with which the

information is transferred. This means that decreasing dielectric and Josephson junction losses is

important for the cavity as well as the qubit, and that the trade-off between suppressing qubit loss

via the Purcell effect and increasing information transfer speeds must be balanced for a particular

application.

The dip resonator has an unambiguous signal if its amplitude is measured, but its phase trace

in frequency space starts and ends at 0◦, as seen in Figure 3.22a. One could sweep a frequency

range and use the trace to detect the resonator’s frequency, but a more efficient way to detect a

frequency shift is to just look at one frequency and measure either amplitude or phase. Amplitude

is symmetric about the resonant frequency for both dip and peak resonators, so a single amplitude
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Figure 3.22: Dip resonator and peak resonator - a) Dip resonator frequency response plotted in
IQ space, in amplitude, and in phase. b) a peak resonator plotted in IQ space, in amplitude, and in
phase. The transformation Ipeak = 1− Idip, Qpeak = −Qdip can be used to move between them.

measurement would not indicate the direction of frequency change. The frequency change direction

for a dip resonator, when measured as phase, is clear for small changes from the resonant frequency,

but can be ambiguous for large frequency shifts. The clearest frequency shift measurement is done

by measuring the phase of a peak resonator. This does not, however, limit circuit designs only

to peak resonators since the simple transformation Ipeak = 1 − Idip, Qpeak = −Qdip allows a dip

resonator to be plotted as a peak resonator, where Idip and Qdip are the measured values of the dip

resonance and Ipeak and Qpeak are the transformed values. The phase data from the tunable cavity

reported in this work are all presented with this transformation applied.

The tunable cavity can be used to do both flux magnetometry readout for the tunneling mea-

surement scheme, like the DC SQUID, as well as dispersive measurement. Performing flux mag-

netometry with the tunable cavity depends on it being biased to a spot that is sufficiently flux

sensitive to clearly show a frequency change when the qubit flux changes by Φ0, schematically

shown in Figure 3.23. Dispersive measurement also involves detecting a frequency change in the

cavity, but the change is due to the energy state of the qubit and not the flux in the qubit loop.

Since the cavity frequency directly follows the qubit state, dispersive measurement is performed
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Figure 3.23: Flux magnetometry using the tunable cavity - a) By biasing the tunable cavity
to a sufficiently flux sensitive place one may readout the flux state of the qubit, distinguishing between
the readout states representing the |0〉 and |1〉 qubit states. b) In practice this means driving the cavity
at one of the two possible resonances and measuring the power returned to readout the flux state. Note
that this may also be done using the phase of the cavity, instead of the amplitude.

during the operate part of the flux ramp, and doesn’t require a separate readout flux level and

corresponding readout time. Schematic pulse sequences for the two methods are shown in Figure

3.24.

3.2.6.2 Advantages of the tunable cavity

The tunable cavity has the potential to remedy many of the problems with DC SQUID readout.

Since the tunable cavity is driven with small amplitude microwaves, there is no emitted Josephson

radiation from switching to the voltage state. Because it can be operated without being directly

wired to room temperature electronics, the tunable cavity can also be much more decoupled from

the environment than the DC SQUID. Also, the strong coupling to the qubit required by the DC

Figure 3.24: Tunable cavity control - Control of the tunable cavity for a) the tunneling measurement
scheme and b) the dispersive measurement scheme. Note that the tunable cavity can be placed in an
arbitrary place during the operate time
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SQUID to overcome its switching noise limitations is not necessary for a tunable cavity since its

state discrimination is limited by the amplifier chain and the cavity flux sensitivity, which may be

tuned to overcome remaining noise.

Another advantage of the tunable cavity is its speed; it can be read out as fast as the amplifier

noise will allow. Using a low noise amplifier, such as a SQUID amplifier[65][66][67], right at the

output of the tunable cavity can increase the signal to noise ratio to down near the quantum limit,

speeding up the data taking rate.

The tunable cavity may also be frequency multiplexed with other tunable cavities to reduce the

number of lines required to operate a quantum processor. Although frequency multiplexing has

been demonstrated with DC SQUIDs[68][69], it requires extra circuitry on chip that may become

cumbersome with a large number of devices. Tunable cavities are effective for multiplexing[70] low

temperature devices and require little more chip real estate than unmultiplexed DC SQUIDS.

A final advantage of doing readout with an tunable cavity is that it can be used for qubit state

transfer[71][72] and storage experiments[40][39]. This can be done while still using the tunable

cavity as a readout element, though these experiments usually require high quality factor cavities.

Either one would have to accept a slow measurement/readout or perform experiments robust enough

for a low quality factor cavity. Another option would be to use an tunable coupler[73][74] instead of

a coupling capacitor between the microwave feedline and the tunable cavity to dynamically change

its external quality factor.

3.3 Dispersive measurement

3.3.1 Jaynes-Cummings and the dispersive shift

As was shown in Chapter 2, the dispersive shift on the cavity as a result of the qubit state for a

two-level qubit is δωr = ±g2/∆01. This corresponds to a phase shift δφ = ± tan−1
(
2g2/κ∆01

)
[23];

61



Figure 3.25: Dispersive shift in the cavity - The dispersive shift of the cavity from its center
frequency ωr due to the qubit state |±〉.

both effects are plotted in Figure 3.25. For the three level qubit, these values become δωr =

±
[
g2/∆01 − g2/∆12

]
and δφ = ± tan−1

(
2/κ

[
g2/∆01 − g2/∆12

])
. The separation of the two curves

clearly depends on three factors: the coupling g, the detuning ∆01, and the quality factor Q = ωr/κ,

since the width of the dip or the slope of the phase change near resonance changes with Q. Strong

couplings quickly increase the separation between states since the shift goes as g2, though they

come at the cost of a larger straddling regime (the region where ωq ≈ ωr) and greater loss through

the cavity. The detuning factor is only linear, but it is clear that large detunings will have smaller

separation. For a device with a low quality factor, large detunings will be particularly challenging

to see. Practically, it is easy to become limited by amplifier noise since measurement with photons

numbers on the order of one helps reduce dephasing due to a qubit frequency shift as a result of

the AC Stark shift.

3.3.2 The AC Stark shift

As the number of photons in the cavity increases, the qubit frequency changes because of the

AC Stark shift ∆fac = 2ng2/2π∆01[62]. The linearity of the shift with photon number allows a nice

calibration of the photon number to power applied to the cavity. This calibration is essential to

operating in the single photon regime, since it is exceedingly difficult to know what power is being
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applied to the cavity, with any precision, since there is usually a long and complex path between

the microwave generator and the device at the bottom of a dilution refrigerator. Figure 3.26a shows

the Stark shift of a qubit at two different frequencies. The slope of either of these lines, ∆f/P ,

can be set equal to the Stark shift divided by drive power P to get a calibration for the number of

photons in the cavity n per power P .

∆f

P
=

2ng2

P∆01
→ n

P
=

∆f

P

∆01

2g2
. (3.13)

Figure 3.26b is the calibration. Note that the calibrations for the two qubit frequencies are the

same; the calibration is valid at any qubit frequency, as long as the power delivered is the same at

each frequency.

Figure 3.26: The AC Stark shift - As the drive power to the cavity increases, the qubit’s frequency
is shifted by the Stark effect. a) The Stark shift for two different qubit frequencies, which obeys
∆fac = 2ng2/2π∆01. b) The slope of the shift gives a count for the number of photons in the cavity at
a given drive power.
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4

Design and modeling of the device

4.1 Metastable phase qubit design

When designing a metastable phase qubit, one must consider the effect of junction size and

area, geometric inductance and capacitance values, and coupling to the outside world through bias

lines, ground planes, and other circuit elements like cavities. More practical requirements, such as

how much current may be driven through the experimental setup, or the microwave range of the

available components, must also be considered in the design process. For instance, it is not difficult

to design qubits that run at 30 GHz, but a given lab may only have generators and components up

to 8 or 18 GHz, limiting the frequency range of devices they may explore.

Each of these decisions affects the others, so it is useful to choose a linear path in the design

process, deciding what parameters are essential for a particular experiment and what parameters

are less important and may be left subservient to the essential ones. The effect of each parameter on

the others must also be explored, and the behavior of the entire circuit must also be considered. The

value of electromagnetic simulation software, such as Microwave Office or Sonnet (both of which

were used here), cannot be understated in designing predictable devices that give the experimenter

the freedom to focus on the science they intend to explore.
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4.1.1 Junction, inductor, and capacitor design

The Josephson junction is the heart of any superconducting qubit, and it is often efficient to

design the device around a particular junction and desired well shape, described by the parameter

βL. As was previously discussed (Section 2.2.1.1), small area Josephson junctions are desirable for

low-loss applications like qubits, since reducing the junction area reduces the number of spurious

TLSs seen by the qubit[75]. The size of the junction is usually limited by practical fabrication

capabilities. For this work, both ion-milled via-style and shadow evaporated junctions were used,

and both were defined using photolithography. Even though spurious TLSs push designers toward

small junction ares, the critical current may still be engineered over a large range by changing

oxidation times or pressures to control the tunnel barrier thickness. This barrier determines the

effective inductance of the junction, which, combined with the geometric inductance, determines

the value of βL. This, in turn, determines range of shunting capacitor values that will put the qubit

in the frequency range desired by the experimenter.

In recent years it has become clear that clever circuit design can be used to mitigate materials

losses by changing circuit geometry[76]. Capacitors in particular couple to nearby materials which

behave as capacitor dielectrics, contributing their intrinsic loss tangents to the capacitor loss, since

capacitors rely on electric fields between electrodes to store energy. For interdigitated capacitors

(IDCs), simply increasing the spacing between capacitor fingers decreases the electric field density

inside the dielectric substrate below them and increases the internal quality factor of IDC LC res-

onators. Another approach to decreasing loss is to put more energy into less lossy circuit elements

by increasing the low-loss element participation ratio. This happens naturally as junction areas

shrink since a decrease in critical current must be compensated for by making the geometric induc-

tance larger in order to have the same βL, which in turn decreases the size of shunting capacitor

needed to maintain the same frequency range.

Although small capacitances and large inductances can have loss advantages, how they affect the
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shape of the metastable phase qubit spectroscopy must be considered when designing. The effect

on the qubit spectroscopy of changing βL by changing the geometric inductance LQu was previously

shown to be a flattening of the spectroscopy as βL increases, seen in Figure 2.10 (Section 2.3.1).

The effect of LQu on the spectroscopy when βL is held constant, allowing Ic to change, and dividing

CQu by the same factor LQu is changed by in order to keep the frequency the same is shown in

Figure 4.1, along with the effect of only changing the shunt capacitor. The geometric inductance on

its own has very little effect on the shape of the spectroscopy curve. It is the ratio of inductances

βL that really changes the shape, as was seen in Figure 3.20. The shunting capacitor’s largest effect

is to shift the qubit frequency higher (lower) for smaller (larger) capacitances, though flattening

of the curve occurs for large capacitances. The shape of the spectroscopy curve matters because a

flatter curve, with less frequency range, makes the qubit less susceptible to flux noise.

Different capacitor geometries have different advantages and disadvantages. A parallel plate

capacitor has the advantage of being an almost purely capacitive component, with very little

inductance. If the dielectric between the plates is removed and only vacuum remains, only loss to

Figure 4.1: How LQu and CQu affect qubit spectroscopy - How the geometric inductance LQu
and shunting capacitance CQu affect the spectroscopy for a constant βL = 3. Calculated numerically
from the Schrödinger equation. The ends of the spectroscopy are where the |1〉 state disappears because
the barrier between wells is too small; this point is probably unobtainable in practice as a tunneling
event is likely to occur very quickly here, before spectroscopy could be taken.
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TLSs in surface dielectrics contributes to the capacitor loss tangent. But in either case multi-layer

processing is required to make a parallel plate capacitor. An interdigitated capacitor may, on the

other hand, be made in a single layer, although it requires a large footprint if it is to have large

spacing between fingers to decrease the electric field densities in the surface dielectric TLSs. It is

also quite inductive, requiring a more complex circuit model to describe its behavior along with a

decrease in the qubit anharmonicity. Both parallel plate vacuum gap capacitors, described in [77],

and interdigitated capacitors were used in this work.

4.1.2 Bias line design

While a seemingly mundane part of design, the bias control line to a qubit or tunable cavity

can drastically affect the performance of the device. The bias line can be a significant source of

noise if coupled too strongly, so care must be taken to estimate this noise properly in the design

phase. Ideally one would like a bias line that is coupled just enough to apply currents necessary

to run the experiment, but no more, in order to limit noise. It is important to use an EM solver

to properly account for all the currents in a given design, getting an accurate measurement for the

coupling.

We can write the Norton equivalent circuit of a bias coil inductively coupled to a parallel LC

resonator as shown in Figure 4.2, where

Figure 4.2: Bias coil Norton equivalent circuit - A bias coil inductively coupled to a parallel LC
resonator may be transformed into a Norton equivalent circuit.
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L′ = LQu

(
1−

ω
(
M2/LQu

)
ωLQub

Z2
0 + ω2L2

Qub

)
, Rext =

L2
QuZ0

M2
, (4.1)

and

IN =
MVs

LQu
√
Z2

0 + ω2L2
Qub

eıθ, tan θ = −
ωLQub
Rext

. (4.2)

From this we may write an expression for a resonator’s energy decay if the only source of damping

is the bias line impedance Z0

T1 = RextCs =
L2
QuZ0

M2
CQu. (4.3)

For a resonator with LQu = 2.5 nH and CQu = 300 fF, an M = 10 pH coupling gives T1 = 938 ns,

while an M = 1 pH coupling gives T1 = 93.8 µs, two orders of magnitude longer. Clearly the 1/M2

factor allows for clean isolation of the qubit from the 50Ω feedline when M is sufficiently small.

It is not enough to have a coil with the proper spacing between it and the device; one must also

provide a current return path to the ground plane, anchored far away from the coil. In the complex

flux environment of a superconducting ground plane, with arbitrary trapped flux gradients from

vortices, it is an inaccurate assumption that currents returned to the ground plane near the coil

will spread evenly through the ground plane to leave the chip. An uneven distribution of returning

currents in the superconducting ground plane can create fluxes in the qubit loop that will not be

seen by EM simulators that assume an even distribution of return currents, thus causing sometimes

large errors in their calculations of M compared to the real device. Figure 4.3, the layout of the

qubit-tunable cavity device measured in this work, shows two bias line designs. The bias line to

the qubit LQuB uses the ground plane near the device as a current return, and gave a mutual

inductance 5 times higher than calculated by the EM simulations. The tunable cavity bias LCavB

design is both gradiometric and has a dedicated current return path wire, which extended all the

way to the edge of the chip. It gave a mutual inductance that agreed with EM simulations. The

gradiometric coil is positioned to be coupled to the tunable cavity, but not coupled to the qubit.
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Figure 4.3: Two bias line designs - The layout of the qubit-tunable cavity device measured in this
work. The qubit bias line LQuB design sent its return current directly to the ground plane and gave
M = 10 pH coupling to the qubit, even though EM simulations predicted M = 1.9 pH. The tunable
cavity bias line LCavB design was both gradiometric and had a dedicated current return path. It gave
M = 1.3 pH, agreeing well with EM simulation.

4.2 Tunable cavity design

4.2.1 Junction, inductor, and capacitor design

The tunable cavity is, in general, the same circuit as the metastable phase qubit, just with a

different βL value; it is designed to be much more linear than the qubit. As discussed in Section

3.2.6, it is advantageous to have a high internal quality factor cavity so that most of the energy

is accessible to the experimenter, instead of being lost to the environment. As discussed above

(Sections 2.2.1.1 and 4.1.1), the geometry of the Josephson junction has a strong influence on its

loss, as do the materials and geometry of the coupling capacitor. Minimizing loss in the junction

for the tunable cavity is the same as for the qubit, so most likely one will choose the same junction

for the cavity as for the qubit. The same goes for the tunable cavity’s shunting capacitor, though

the actual value will most likely be different than the qubit’s shunting capacitor. If using an IDC

for the tunable cavity shunting capacitor one need not worry about the reduction in anharmonicity

due to stray inductance; the tunable cavity can be as harmonic as necessary.

Assuming that the Josephson junction is a source of significant loss, increasing the internal
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quality factor means, after doing one’s best to make a low-loss junction, decreasing the participation

ratio of the junction in the total circuit. One way to do this is to add an inductance in series (Ls)

with the inductive loop, as shown in Figure 4.4. This series inductance can be parallelized into an

Leff and Reff parallel circuit, with the values

Leff = Ls +
L1 (L1 + Ls)R

2
J

(L1 + Ls)R2
J + L2

1Lsω
2

(4.4)

and

Reff =

(
1 +

Ls
L1

)2

RJ +
L2
sω

2

RJ
, (4.5)

where L1 = LCav ‖ LJ . The second term in the Reff expression is small for reasonable loss in the

junction (Reff = 20 kΩ), so we can write this as

Reff ≈
(

1 +
Ls
L1

)2

RJ . (4.6)

The resonant frequency of the circuit with this extra series inductance, including the coupling

Figure 4.4: Tunable cavity with series inductance Ls - If the loss in the Josephson junction is
significant, the internal quality factor of the tunable cavity can be increased by adding a series inductance
to the inductive loop. This lowers the participation ratio of the junction in the total circuit. The circuit
elements in the red box may be parallelized into an Leff and an Reff circuit.
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capacitor, is well approximated by the expression

ω0 =
1√

(L1 + Ls) (Cc + CCav)
. (4.7)

Here the capacitance of the small junction is assumed to be included in CCav. The expression for

the internal quality factor of this circuit is

Qint = ω0Reff (Cc + CCav) ≈ ω0

(
1 +

Ls
L1

)2

RJ (Cc + CCav) . (4.8)

The external quality factor of this circuit depends on the output line impedance Z0 and the coupling

capacitance Cc. Its effective resistance can be written as

Rext =
2

Z0ω2
0C

2
c

. (4.9)

This can be used, along with the expression for Leff , to write the expression for the external quality

factor

Qext =
Rext
ω0Leff

=
2

Z0ω3
0C

2
c

(L1 + Ls)R
2
J + L2

1L
2
sω

2

(L1 + Ls)
2R2

J + L2
1L

2
sω

2
. (4.10)

The relationship between the series inductance Ls and the internal quality factor Qint is shown

in Figure 4.5a. Using a large Ls clearly increases Qint without changing Qext very much. Yet

applying this method for increasing Qint to the qubit circuit may be problematic as Ls tends to

linearize the device as it changes βL, decreasing its frequency range. This effect may be clearly seen

by changing Ls and compensating for the frequency shift by changing the shunting capacitance

CCav and plotting the spectroscopic response, as in Figure 4.5b where βL < 1.

For fast, efficient response it is desirable to design Qext � Qint, since it is inefficient to have the

cavity more internally lossy than the coupling to the feedline; if Qext ≥ Qint then at least half of

the energy leaves through unrecoverable channels and is not detected by the experimenter. Since
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Figure 4.5: Tunable cavity Q and spectroscopy for changing Ls - a) The internal Qint and
external Qext quality factors are plotted for various series inductances Ls. Increasing Ls increases Qint
much faster than the increase in Qext. b) Changing the series inductance Ls changes the shape of the
tunable cavity spectroscopy, decreasing its frequency range. The shunting capacitor CCav is changed to
compensate for the frequency shift.

the cavity response time is given by

TCav =
1

κ
=

Q

ωCav
, (4.11)

the external quality factor dominates the response time when this design condition is met. For this

circuit design, the rise time is therefore controlled by the size of the coupling capacitor. For low T1

qubits it is important to have a sufficiently fast rise time since as the tunable cavity is ringing up

the qubit is decaying, decreasing the signal visibility. Figure 4.6 shows the effect on the |1〉 state

visibility when the qubit is directly measured with the tunable cavity, using the dispersive shift.

4.2.2 A single photon in the tunable cavity

When driven with only one photon, the AC Stark shift is a small effect that may usually be

ignored. Also, the dispersive shift shows a simple relationship when the cavity is driven with only

one photon; from Equation 2.41 we can see that the dispersive shift also depends on the number
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Figure 4.6: T1 decay and cavity rise time - The the quality factor QCav of the cavity, combined
with the qubit energy decay time T1 determines the visibility of the |1〉 state when the cavity is used to
directly measure the qubit in the time domain. For an f01 = 7 GHz cavity and a qubit with T1 = 500
ns. As QCav increases, the visibility decreases.

operator a†a or the number of photons in the cavity n such that

ω̃r = nωr ± n
g2

∆01
. (4.12)

This expression is simple with just one photon, though not exceedingly complex with multiple

photons. It is useful to know the voltage across the tunable cavity’s capacitor that corresponds

to a single photon. More practically, it is useful to know what source voltage Vs corresponds to a

single photon. The expression for a single photon in an LC resonator with capacitance CCav is

~ωr =
1

2
CCavV

2
c → Vc =

√
2~ωCav
CCav

, (4.13)

where Vc is the voltage across the capacitor CCav, and ωCav is the resonant frequency of the

cavity. The tunable cavity circuit may be simplified as shown in Figure 4.7. After the circuit
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Figure 4.7: Simplification of tunable cavity circuit - The expression for how much source voltage
Vs must be applied to get a single photon in the tunable cavity may be found by simplifying the circuit
and applying Kirchhoff’s current law.

simplifications we can define the substitution

α =

(
2

Z0 + ZLoad
− 1

Z0

)
Zint, (4.14)

and then plug it into an expression for the source voltage required for single photon driving

Vs =
Vint
α

=

√
2~ωCav
CCav

α
. (4.15)

4.3 Qubit-cavity coupling

4.3.1 Tee inductor coupling

The metastable phase qubit and the tunable cavity may be passively coupled using inductors,

either in a transformer configuration or in the equivalent tee circuit, shown in Figure 4.8. The

transformer configuration uses a free space coupling, while the tee configuration is an equivalent

circuit with shared currents. Since the transformer configuration is best used as a gradiometer

for canceling spurious external fields, it requires multiple layer fabrication and a dielectric layer.

If, however, one would like to make a single layer device for loss reasons (dielectrics are lossy, as

discussed earlier) the tee configuration is the simple, effective inductive coupling choice. It is simple

and accurate to calculate the coupling M for the tee design as it is just the inductance of a wire

instead of the more complex 3D free space design.
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Figure 4.8: Passive coupling with inductors - Two methods for passive inductive coupling between
the metastable phase qubit and tunable cavity. a) Transformer coupling relies on open space geometry
to transfer current between coils using flux. This method is least susceptible to noise when the coils
are gradiometric, which requires multi-layer fabrication with a dielectric layer. b) Tee inductor coupling
has equivalent noise susceptibility, but does not need gradiometric design and therefore does not require
multi-layer processing.

4.3.2 EM simulations of splitting

Both Microwave Office and Sonnet were used to do simulations of our circuits. Microwave

Office has a very nice lumped element schematic simulator that makes fitting a lumped element

model to the full EM simulation output very easy. Sonnet has the advantage over the Microwave

Office version available to us of being able to model larger spaces, as well as a simple way to place

lumped elements on the layout to represent the Josephson junctions. The layout of one circuit is

shown in Figure 4.9a. This layout was simulated for an array of lumped element inductances that

represent the Josephson junction’s response to changing applied fluxes in the qubit, while holding

the junction inductance of the tunable cavity fixed. This method accurately predicted the splitting

size 2g/2π for this circuit design, with the results shown in Figure 4.9b. Design control over g is

Figure 4.9: EM simulation of cavity splitting - a) The circuit layout used for EM simulation
in Sonnet, including the conductor bounding box. b) EM simulation of qubit spectroscopy done using
Sonnet, sweeping a lumped element inductance to simulate the response of the junction to applied flux
in the qubit, while keeping the tunable cavity junction inductance constant.
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Tunable cavity

Element Value

CCav 180 fF
LCav 680 pH

Ic 0.4 µA
LCavb 700 pH
MCavb 1.3 pH

Cc 19 fF
Ls 1850 pH

Qubit

Element Value

CQu 330 fF
LQu 2450 pH
Ic 0.4 µA

LQub 120 pH
MQub 1.9 pH

M 71 pH

Table 4.1: Summary of design values.

crucial in designing cQED experiments, as it enters the expressions for the dispersive shift and the

AC Stark shift as g2.

4.4 Summary of design values

The design values used to make the metastable phase qubit-tunable cavity device (Figure 4.3)

are summarized in Table 4.1. The tunable cavity IDC (CCav) fingers were 2 µm wide, 140 µm long,

with a 2 µm gap between them. There were 22 fingers. The capacitor rail on the side opposite

the ground plane was 8 µm, to cut down on stray series inductance in the capacitor. The stray

series inductance of the tunable cavity capacitor was calculated as 70 pH. The tunable cavity series

inductance Ls was made from a meander inductor with 2 µm wire widths and 2 µm spacing between

turns, with 31 turns, each turn 80 µm long. The calculated stray capacitance across the structure

was 50 fF. The tunable cavity geometric inductance LCav was also a meander inductor and had

2 µm wire widths and 2 µm spacing between turns, with 20 turns on each side, each turn 38 µm

long. The calculated stray capacitance across the structure was 20 fF. The coupling IDC to the

microwave feedline (Cc) had 5 fingers, each 104 µm long, 2 µm, with 2 µm gaps. The microwave

feedline was 8 µm wide with a 4 µm gap to the ground plane.

The qubit IDC (CQu) fingers were 2 µm wide, 200 µm long, with a 2 µm gap between them.

There were 34.5 fingers. The capacitor rails were 8 µm to cut down on stray series inductance in
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the capacitor. The stray series inductance of the qubit capacitor was calculated as 100 pH, and the

stray capacitance to ground was calculated at 30 fF. The qubit geometric inductance LQu was a

meander inductor with 2 µm wire widths and 2 µm spacing between turns, with 39 turns on each

side, each turn 80 µm wide. The calculated stray capacitance across the structure was 30 fF.
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5

Sample fabrication

5.1 Wiring and insulating layers

Three different circuit designs are shown in Figure 5.1. The DC SQUID readout design, Figure

5.1a, is simply a qubit coupled to a DC SQUID. It is was a multi layer design with insulators used

to make crossovers, with via-style Josephson junctions and a fixed transmission line cavity. The

100 nm sputtered aluminum layers were wet etched in transene, and the silicon nitride insulators

were dry etched in an O2 − CF4 plasma, tuned to provide 45◦ sloped edges. It was made on a 3

inch sapphire wafer. The device is described in more detail in [41].

Figure 5.1: Optical micrographs of the three designs - a) Metastable phase qubit readout with
a DC SQUID. b) Metastable phase qubit measured/readout with a tunable cavity strongly coupled to
the microwave feed line. c) Four tunable cavities multiplexed on a single microwave feedline.
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The second design, Figure 5.1b, is a metastable phase qubit coupled to a tunable cavity. It is

a simple two layer design, with a wiring layer and a shadow evaporated Josephson junction layer.

The 100 nm sputtered aluminum wiring layer was dry etched in a Cl2 and BCl3 plasma. All layers

were made photolithographically, on a 3 inch sapphire wafer.

The third design, Figure 5.1c, is four tunable cavities without any qubits. This is another multi

layer design with crossovers, vacuum gap capacitors, and via-style Josephson junctions. The wiring

layers are 100 nm thick sputtered aluminum, the vacuum gap and crossover sacrificial layers were

175 nm thick SiNx, and the Josephson junction insulating layer was 350 nm thick. The junctions

were nominally 6 µm2 and had critical currents of 1.2 µA. The device was made on a 3 inch sapphire

wafer.

5.2 Josephson junction

5.2.1 Junction technology development

Although superconducting Josephson junctions are a decades old technology, using them in

coherent quantum devices is a fairly young field, so much experimentation with various fabrication

techniques has occurred. The intention here is not to give a broad overview of the field of Josephson

junction materials research for superconducting qubits, but to briefly show the progression in the

group at NIST Boulder.

5.2.1.1 Via junctions

The early metastable phase qubits at NIST were made from Nb/AlOx/Nb trilayers[22], though

the switch was quickly made to Al/AlOx/Al via-style junctions[78] as other groups got better

results with aluminum, albeit with a completely different device design and junction fabrication

procedure[79]. By 2006, when this work began, the via-style Al/AlOx/Al junction was finishing its

run as the workhorse of the metastable phase qubit community. While this technology had yielded
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many exciting experiments, its inherently large area junctions proved to be too lossy and had too

many TLSs, and thus needed to be replaced by better technologies.

Fabrication of the via-style Josephson junction is shown schematically in Figure 5.2. It starts

with a lithographically defined aluminum pad on a substrate, usually a sapphire wafer. A low loss

insulator like SiNx is grown on top, a via is cut down to the aluminum pad, the surface is ion-mill

cleaned (or RF cleaned with high kinetic energy[35]), oxidized, then capped with another aluminum

layer. After the aluminum layer is lithographically defined, insulator is cut away to expose the

underlying aluminum layer so it can be connected to the junction top electrode. If using SiNx as

the insulating layer, after connection to the top electrode it is possible to do a fluorine etch, such

as XeF2, to remove the remaining insulator and improve the device’s loss characteristics. Figure

5.3 is an electron micrograph of a via-style Al/AlOx/Al Josephson junction and wiring via where

the SiNx dielectric layer has been removed. Note that the wiring crossovers are also suspended

instead of resting on a dielectric layer.

The metastable phase qubit coupled to a DC SQUID reported in this work had a 6 µm2 via-style

qubit junction with a critical current around 1 µA (LJ0 = 329 pH). Its SiNx dielectric was cut

Figure 5.2: Via junction fabrication - a) Al is sputtered and patterned by photolithography on a
sapphire surface. b) An insulator is deposited by PECVD and then vias are etched where the junctions
will be. c) The vias are ion-mill cleaned or cleaned with a high kinetic energy RF clean, then AlOx is
grown, Al is sputter-deposited, then patterned using photolithography to leave a small island of metal.
d) The insulator is patterned and etched using photolithography to enable connection of the junction
top electrode to the rest of the circuit. e) Another Al wiring layer is deposited and patterned to connect
the junction top electrode. f) If using SiNx, the remaining insulator may be removed using a fluorine
gas etch, leaving vacuum gaps beneath the junction top electrode connections.
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Figure 5.3: Via junction scanning electron micrograph - A via junction with all the SiNx
dielectric layer removed, suspending its top electrode as well as the top electrodes of the wiring via seen
in the background.

down to have a minimal footprint, but was not removed from under the top wiring layer.

5.2.1.2 Trilayer junctions

A hypothetically cleaner method for fabricating Josephson junctions is by making them in an

Al/AlOx/Al trilayer, which is then cut to define the junction area and connected to a wiring layer.

This allows the junction to be made in one chamber, without ever breaking vacuum, which should

lead to a junction with fewer interface defects. A Cl etching system, made by Trion Technology was

used to etch the trilayer and define the junction. This system has been problematic and unreliable,

though with much work by the cleanroom staff was made reliable for etching of aluminum wiring

layers. The trilayer fabrication method is shown in Figure 5.4. The trilayer is made from Al that

has been sputtered on sapphire, oxidized, then capped with another sputtered Al layer. The trilayer

is etched until just past the tunnel barrier, the base electrode is defined with another lithography

and etch step, everything is coated with SiNx, and a via is cut through to the top electrode. The

top Al electrode is sputter deposited, then etched to define wires. The extra insulator is then

81



Figure 5.4: Trilayer junction fabrication - a) An Al/AlOx/Al trilayer is made by sputtering and
oxidizing. b) The trilayer is patterned with photolithography and etched using a Cl etcher, which is
stopped just after cutting through the oxide layer. c) SiNx is deposited by PECVD, then d) patterned
with photolithography and etched to create a via to the junction. e) An Al wiring layer is deposited by
sputtering after an RF clean. f) Finally the Al and then the SiNx are patterned with photolithography
and etched.

removed from the bulk of the wafer, but left under the wiring crossovers. The resulting junction

structure is shown in Figure 5.5. The most striking feature of the micrograph is how rough the

bottom electrode surface is. This roughness was observed by both optical and electron microscopy

immediately after doing the Cl etch that stops just below the tunnel barrier. Devices fabricated

with this junction method did not function well at low temperatures, despite having junction

normal resistances that matched design parameters. When the chamber for fabricating a more

proven technology, shadow evaporated Al/AlOx/Al junctions, came online at NIST and showed

promising results, the trilayer project was abandoned.

5.2.2 Shadow evaporated junctions

Shadow evaporation has been used for decades[80] for making small area Josephson junctions.

The procedure is shown schematically in Figure 5.6. The substrate and wiring layer are coated first

with a lift off resist (LOR) layer, then standard photoresist. The photoresist is then exposed with

a pattern that becomes a bridge over the open substrate when developed, as the LOR is dissolved

in the developer. The wafer is then briefly cleaned in an oxygen plasma etch, then loaded into the

deposition chamber and cleaned using an ion mill for 60 s. The wafer is tilted at an angle ±α from
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Figure 5.5: 4 µm2 trilayer junction scanning electron micrograph - The surface roughness of
the partially etched trilayer could have limited the reliability of these junctions.

Figure 5.6: Shadow evaporation junction fabrication - a) A photoresist bridge masks the area
where the junction will be placed, and the region is ion-mill cleaned for 60 s. b) Al is e-beam evaporated
onto the sample at an angle +α, then oxidized, then evaporated again at the complimentary angle −α.
c) The junction remains after lift-off.
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perpendicular to the deposition source and an electron beam deposition is performed. Because of

the strongly directional nature of electron beam evaporation, only the portion of the substrate in

the evaporated atoms’ line of sight is coated. The new Al surface is oxidized, the sample is rotated

to ∓α and a second deposition occurs. The wafer is then lifted off in a gentle (no ultrasonication)

stripping process of cold acetone to remove the photoresist, followed by a warm solution to strip

the LOR. The resulting junction is shown in Figure 5.7.

The width (W ) and length (O) of the overlap region give the nominal area of the junction

A = WO. The length of the overlap region depends on the angle α according to O = 2h tanα− d,

where h is the thickness of the LOR and d is the width of the photoresist bridge. Thus the area

of the junction is sensitive to the angle α and may be fine tuned by carefully changing just the

angle, allowing precise selection of junction critical currents for small area junctions. As a further

refinement, we used our stepper to change the width of the photoresist bridge by using a mask for

each side and offsetting one of the masks a small amount on each row of dies on the wafer. Another

advantage to this fabrication method is that shadow evaporated junctions may be placed on the

wafer as the last fabrication step, keeping the electrostatically and thermally sensitive junctions

away from possibly damaging processing steps. The via-style ion mill and the trilayer junctions

both have multiple processing steps after the junction is fabricated, including plasma depositions

and etches, increasing the possibility for fabrication related damage to the junctions.

Initially, the custom built shadow evaporation chamber at NIST did not have ion mill capabilities

for removing the native AlOx from the wiring layer, so device wiring was made from Nb, and thin

Au pads (30 nm) with a 3 nm Ti adhesion layer were deposited on the junction pads to make a

clean deposition surface for the junction aluminum. Although this procedure gave reproducible

results, the coherence times of the resulting devices were unsatisfactory. An ion mill was installed

in the chamber, making all-Al devices, without adhesion layers, possible. These devices gave the

longest energy relaxation times seen at NIST to that point, and are reported in this work. The
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Figure 5.7: Shadow evaporated junction micrographs - A 0.4 µm2 Al/AlOx/Al shadow evapo-
rated Josephson junction, made with photolithography. Optical and scanning electron micrographs. In
the electron micrograph, the first deposition is false colored green, and the second deposition is false
colored blue.

next generation devices, not reported in this work, had even longer lifetimes, as much as T1 = 1.5

µs. The shadow evaporated qubit junctions for the devices reported here were 0.4 µm2 with ≈ 0.4

µA (LJ0 = 823 pH) critical currents.

5.3 Packaging

5.3.1 Box

Device chips diced from a wafer after fabrication are mounted in custom made boxes, shown in

Figure 5.8, featuring twelve 50Ω microwave lines embedded in a 3 layer board. SMA connectors

are soldered to the outer edge of the traces, and Al wire bonds are used to connect the traces to

the chip. The chip is pressed against the lower ground plane of the board by screws mounted in

the lower half of the brass box, shown schematically in Figure 5.8. The box and microwave traces

are designed to be free of significant resonant modes in the 2-12 GHz band.

5.3.2 Wire bonds and spurious resonances

The wire bonds connecting the microwave board to the chip connect not just the traces to the

chip’s bond pads, but also connect the board’s ground plane to the chip’s ground plane. The number

85



Figure 5.8: Chip mounted in box/circuit board combo - a) Picture of the chip mounted in the
box, without the brass lid. b) The chip is pressed against the bottom layer grounding layer of a three
layer circuit board, held in place by top and bottom pieces of the brass box. The center board contains
traces from near the chip surface to the SMA connectors on the edge. Aluminum wire bonds connect
the traces to the chip bonding pads.

and arrangement of these wire bonds can have a dramatic effect on the spectral environment seen

by the qubit and the microwave drive and detection instruments[81]. At least three bonds are used

per trace connection, in an attempt to maintain a 50Ω impedance between the board and chip.

There are also bonds connecting ground planes on chip that have been separated by wiring, as seen

in Figure 5.9. This is necessary for devices that only have one wiring layer and/or don’t have

crossovers between ground planes. When two large ground planes are separated by a long boundary,

potential differences in the planes may develop in a phenomenon known as a “slot mode,” creating

a complex structure in frequency space, with many resonances. This effect is shown in Figure 5.10,

where a single layer Nb parallel LC circuit with several separated ground planes was measured in

transmission at 4 K, with and without crossover bonds connecting the ground planes. Connecting

the ground planes is clearly critical, as spurious modes are abundant when they are allowed to float

more freely. This could motivate future work into determining if making a dielectric layer just for

crossovers significantly increases energy decay rates in coherent devices.
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Figure 5.9: Ground plane wire bonds - Optical micrograph of ground planes connected with wire
bonds, to suppress spurious slot modes.

Figure 5.10: Transmission measurements with and without crossover bonds - A lumped
element LC resonator made of Nb on SiO2 measured at 4 K without and then with wire bond crossovers,
in two different dunks. When the crossovers where subsequently removed and the sample dunked again,
the same no-crossover pattern (red) appeared again.
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6

Experimental setup

6.1 Dilution refrigerator

All experiments were performed in an Oxford dilution refrigerator at around 40 mK. The devices

were placed in a custom made thermal shield, consisting of a copper can coated on the inside with

Eccosorb CR-124 resin to absorb thermal photons radiated at 4 K by the vacuum can. The device

boxes are thermally sunk to the thermal shield, which is in turn thermally sunk to the mixing

chamber, both through copper braids. Without the thermal shield, thermal photons allow both

the f12 and the f23 transitions to be seen spectroscopically. With the thermal shield, only the f01

transition is seen (f02/2 can still be seen at high power), demonstrating that radiated 4 K thermal

photons have been successfully attenuated below levels that can be seen spectroscopically. The

thermal shield was placed in a custom made double-walled Cryoperm magnetic shield, which was

placed on the mixing chamber, to prevent arbitrary flux changes from external fields.

6.1.1 Wiring schematic

The fridge wiring schematic for the metastable phase qubit-tunable cavity device is shown in

Figure 6.1. The microwave drive and detection circuit to the tunable cavity is drawn in red.
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Figure 6.1: Fridge wiring schematic - A picture of the dilution refrigerator at room temperature,
with the stages labeled, as well as a schematic of the wiring. The microwave drive and detection circuit
for the tunable cavity is drawn in red, with the microwave drive for the qubit, which is combined with
the cavity drive, is shown in purple. The flux bias line to the tunable cavity is drawn in green, with the
flux bias line to the qubit drawn in blue. The grey dotted box inside the mixing chamber represents the
thermal and magnetic shields.
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The cavity was driven by a gated generator, which was split to also provide the LO drive for

signal detection with an IQ mixer and a two channel data acquisition card. The device output was

amplified with a SQUID amplifier at base temperature, a HEMT amplifier at 4 K, and three room

temperature amplifiers before being put into the IQ mixer RF input. Cavity drive amplitude was

controlled by a programmable attenuator. A network analyzer is also connected to the cavity drive

and detection circuit, to be used as secondary source and detection setup for efficient data taking

for tunneling measurement readout. The qubit microwave drive, drawn in purple, was combined

into the same microwave feedline, with pulses from a vector signal generator shaped by two channels

of an arbitrary waveform generator. Tunable cavity flux, drawn in green, was controlled by a third

arbitrary waveform generator channel. The qubit flux, drawn in blue, was controlled by both fast

and slow sources, combined in a custom bias tee[35] at base temperature. The fast flux is from a

channel of the arbitrary waveform generator (Tektronix AWG5014B), and the slow flux is from a

programmable current source (Yokogawa 7651).

The thermal and magnetic shields are represented in Figure 6.1 as the grey dotted box inside the

mixing chamber. The two isolators between the circuit and the SQUID amplifier are placed outside

these shields because of their magnetic nature. Since both the device and the SQUID amplifier

are very sensitive to magnetic flux, it is important to magnetically shield them from the magnetic

materials inside the isolators.

Attenuators are placed along the microwave lines at different stages of the dilution refrigerator

to decrease the amount of thermal photons seen by the device. The number of photons added by

the attenuation at stage i can be calculated using the Bose-Einstein disribution

ni =
1

e~ω/kT − 1
. (6.1)

This number, minus the photons at the current temperature removed by the attenuator, is then

added to the number of thermal photons from the previous stage ni−1 divided by the attenuation
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value A to get the total number of thermal photons leaving the current attenuation stage nT ,

nT =
ni−1

A
+ ni −

ni
A

=
ni−1

A
+
A− 1

A
ni. (6.2)

For the setup shown in Figure 6.1, with 30dB of attenuation, the number of photons reaching the

device at 40 mK at 6 and 9 GHz are 0.2 and 0.1 photons, respectively. While this level is small, it

is not insignificant. At these levels the thermal population of the |1〉 state is sufficient to allow the

f12 transition to faintly appear when doing a high power spectroscopic sweep. Note that at 40 mK

the native thermal population at 6 and 9 GHz is 5× 10−5 and 7× 10−4 photons, respectively.

Clearly, more attenuation at the mixing chamber would further lower the unwanted thermal

population, but two other factors must be considered. First, the room temperature generators must

be able to drive enough power to control and measure the cavity and qubit; too much attenuation

and there will not be sufficient power reaching the device to perform qubit manipulations when the

generator is at its maximum power. The second consideration is the amount of power dissipated

at the mixing chamber by the attenuator-if the dissipation is higher than the dilution refrigerator’s

cooling power the base temperature will rise. While these limitations depend on the specific gen-

erators and refrigerators used, one can optimize the attenuator values at each thermal stage using

Equation 6.2,

ni−1

A
≈ A− 1

A
ni, (6.3)

as a guide. The attenuator values and placements in Figure 6.1 are clearly not optimized. They

were chosen to allow for plenty of power to be delivered to the device in case the microwave feedline

was undercoupled, a compromise that allowed a small but not insignificant thermal population.

An optimized setup would have moved the 10 dB attenuator on the heat exchanger to the mixing

chamber, allowing only 0.01 thermal photons at 6 GHz onto the device.

All instruments were triggered by a single pulse generator (Agilent 33220A, not shown in Figure
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6.1), which was triggered from a computer using a GPIB command. For flux readout using the

network analyzer, the pulse generator was set to burst mode to generate the N samples used to

make a histogram with only one GPIB trigger. For dispersive readout the pulse generator was set

to continuous mode and data was recorded by the data acquisition card when it was ready. All

time sensitive instruments, including the data acquisition card, were synchronized through 10 MHz

reference ports to a rubidium frequency standard (SRS FS725).

6.2 Signal generation

6.2.1 Microwave generation and pulse shaping

Full qubit control requires pulses that have a controllable amplitude, phase, and duration.

The pulses must also have a high on-off ratio so that manipulations aren’t happening when not

intended. For the metastable phase qubit with via-style junctions that was read out with a DC

SQUID, microwave pulses were made using a two mixer setup controlled with an FPGA. The setup

is shown schematically in Figure 6.2. The pulse generation is done in two stages, using two IQ

Figure 6.2: FPGA controlled microwave pulse electronics - A continuous wave generator drives
the LO port of an IQ mixer, with the IQ ports controlled by an FPGA using 14 bit DACs. This
first stage sets the amplitude and phase of the pulse. The second stage, another IQ mixer, is gated
with a hard pulse that has been filtered into an approximately Gaussian waveform. This pulser is also
controlled by the FPGA using an 8 bit serializer to gain time resolution 1/8 of the FPGA clock period.
The output is a roughly Gaussian wavepacket.
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mixers. The first mixer is driven by a continuous wave microwave generator (Anritsu 68369A/NV)

at +12 to +14 dBm. The I and Q ports are biased by 14-bit DACs controlled by the FPGA and

updated once per clock cycle. Changes to I or Q change the amplitude and phase of the output

pulse. An amplifier brings the signal back up to the +12 to +14 dBm input power required by

the next IQ mixer, which does the time domain pulse shaping. One port is capped with a 50Ω

termination, and the other is given a hard pulse, shaped by an approximately Gaussian filter, which

sets the duration of the output pulse. The “pulser” is an 8 bit serializer controlled by the FPGA

that gives the second stage a time resolution of 1/8 the FPGA clock period. The FPGA clock is

run at 175 MHz, giving a 0.7 ns time step for the pulser. This FPGA-based microwave sequencer

was developed by John Martinis during his time at NIST, and the communication software between

the sequencer and a control computer was written by his group at UCSB[34].

For the metastable phase qubit-tunable cavity device, microwave pulse control was achieved

using a vector signal generator (Agilent E8267D) whose IQ ports were controlled by an arbitrary

waveform generator (Tektronix AWG5014B) set to a 1 GS/s sampling rate, as shown in Figure

6.3a. The arbitrary waveform generator was programmed with Gaussian pulse shapes to minimize

driving transitions beyond the f01 transition, as described in Section 3.1.3. The on-off ratio of the

Figure 6.3: Microwave pulse electronics - a) A vector signal generator, shaped by an arbitrary
wave generator, generates gaussian pulses with arbitrary rise times and is used for qubit control. b) A
simpler setup for driving the tunable cavity uses a PIN diode and digital delay pulse generator with a
fast rise time to gate a continuous wave source. Because the tunable cavity is run in a semi-continuous
mode, this setup is adequate. The PIN diode setup is also used to gate the network analyzer drive to
the cavity.
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output was viewed on a spectrum analyzer for calibration, with small DC offset voltages applied by

the arbitrary waveform generator in a frequency dependent way to keep the on-off ratio at about

70 dB between 4 and 9 GHz.

The microwave drive required by the tunable cavity is somewhat less demanding, since it is

operated in a semi-continuous mode with 5 to 100 µs long pulses (much longer than the qubit

pulses) and phase control is not needed. This allows pulses to be generated with a continuous wave

generator (Anritsu 68369A/NV) and simply gated by a PIN diode (HP 11720A) with a hard pulse

from a digital delay line generator (Stanford Research Systems DG535), as shown in Figure 6.3b.

The PIN diode has a typical on-off ratio of 50 dB. This setup was used for driving the cavity during

dispersive measurement. The PIN diode setup was also used to gate the network analyzer (Agilent

E5071C) when it was being used to drive the cavity for flux readout after tunneling measurement.

6.2.2 Flux control, filtering, and bias tees

For the qubit, both fast and slow flux biases were applied. The fast flux was applied by one

channel of the arbitrary waveform generator (Tektronix AWG5014B), attenuated, then injected into

a 50Ω microwave line with the stages of attenuation shown in Figure 6.1. At the mixing chamber

the signal goes into the RF port of a custom made bias tee, described below. The rise time of the

arbitrary waveform is shown in Figure 6.4, for both short and long timescales. The generator

Figure 6.4: Rising edge of a flux pulse from the Tektronix AWG5014B - a) An oscilloscope
(4 GHz Tektronix TDS6404) trace of a nominally 1 ns flux pulse spanning 1.5 V. The actual rise time
is 3 ns. b) A long oscilloscope trace showing the drift in the generator over microsecond timescales.
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does not produce clean step edges on either the nanosecond or microsecond timescale. Although

corrections for this instrument may be done to more accurately generate a step edge[82], for this

work it was sufficient to wait 3 µs for the instrument to settle, then apply a linear correction ramp.

The ramp slope was found by biasing the qubit to the shallow well at P|1〉 = 0.5 (for maximum

sensitivity) and moving the measure pulse in time across several microseconds. The ramp slope at

which P|1〉 stayed flat was used. The fast flux line for the qubit is not filtered, except by the low

temperature attenuators, which only control thermal noise.

The slow flux line to the qubit is driven by a very accurate current source (Yokogawa 7651),

which is filtered using a low pass RC filter with a roll-off at ≈1 MHz, at 4 K, followed by a 650

MHz low-pass filter encased in copper powder at base temperature. The copper powder absorbs

radiation above about 1 GHz. The flux to the tunable cavity is run through the same filtering,

though its source is one of the arbitrary waveform generator channels. The 1kΩ resistor in the RC

filter ensures that the 50Ω arbitrary waveform generator behaves as a current source. The room

temperature attenuators/dividers provide increased resolution by matching the voltage or current

needs of the experiment to the full range of the generators. For example, if a current source has a

full scale range of 100 mA, but only 2 mA of range is required to move across an entire metastable

phase qubit step, then dividing the current source output by 50 would give the highest current

resolution available with the generator across the qubit step range.

A bias tee was required for combining the currents for the fast and slow qubit fluxes. A custom

bias tee was used here, with the design detailed in [35] and shown schematically in Figure 6.5.

Briefly, the bias tee passes fast flux pulses with approximately nanosecond rise times but also

allows the pulses to have durations of several microseconds without distortions through the RF

port. It allows constant DC signals through the inductive port as well, which filters and high

frequency noise. Commercial bias tees often include a capacitive DC block on the RF port which

would not allow passage of a several microsecond long pulse without sever distortions.
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Figure 6.5: Custom bias tee - Bias tee schematic. The 50Ω resistor damps resonances in the 6
µH conical inductor, and the lack of a capacitor on the RF side allows for wider-band signals such as
several-microsecond flux pulses and slow ramps.

6.3 Signal detection

A simplified signal detection schematic is shown in Figure 6.6. The network analyzer or the

generator/IQ mixer/data acquisition card may be used as the source/detector pair. There are

amplification stages at three temperatures: 40 mK, 4 K, and room temperature. The SQUID amp

is a very low noise amplifier, described in more detail below, and it sets the noise temperature of the

amplifier chain, since it sits at the lowest temperature of all the amplifiers[83]. Because of a large,

previously observed back-action of the SQUID amplifier on the cavity without isolation between

them, two 20 dB low temperature isolators are used. For most of the measurements presented here,

the SQUID amplifier was biased to a place with a maximal signal to noise ratio and had a gain

of about 17 dB and a noise temperature of approximately 600 mK (line loss uncertainties in its

measurement could put this number as high at 1 K or as low as 400 mK). The gain G ≈ 17 dB

Figure 6.6: Simplified signal detection schematic - The tunable cavity’s state is interrogated by a
microwave pulse from the source, either a gated generator or a Network Analyzer output. After passing
through five amplifier stages, the signal is detected either with an IQ mixer/DAQ card setup or using
the Network Analyzer. The noise temperature of the amplifier chain is set by the SQUID amp.

96



of the SQUID amplifier was estimated using data from two cooldowns; one without the SQUID

amplifier and one with the SQUID amplifier, measured with a source and spectrum analyzer. The

noise floor N = −71 dBm was measured using the spectrum analyzer set to bandwidth B = 10

Hz while the source was off. The SQUID amplifier noise temperature was calculated with the

expression

TN =
1

kB

(
N

GB
− ~ω

2

)
, (6.4)

where ω = 2π6.78 GHz is the frequency at which the amplifier is operated and kB is Boltzmann’s

constant. The largest uncertainties come from the gain measurement.

The HEMT amplifier was purchased from the Caltech radiometer group, a 4-12 GHz LNA with

nominally 38 dB of gain and a nominal noise temperature of about TN = 4 K at T = 20 K and

7 GHz. Two 20 dB isolators also keep backaction and thermal photons from impinging on the

SQUID amplifier from the HEMT amplifier and 4 K components. The three room temperature

amplifiers (Mini-Circuits ZVA-183+) have 26 dB of gain from 0.7 to 18 GHz. Because they are

so wideband, care must be taken to suppress noise out of the measurement band (∼5-7 GHz), so

filters are connected between amplifiers. The isolators all have a pass band of 4-8 GHz and 20 dB

of isolation. The low pass filters (Mini-Circuits VLF-7200+) allow DC-7.2 GHz to pass, while the

high pass filters (Mini-Circuits VHF-3800) allow 4.25-10 GHz to pass. This combination creates a

bandpass filter from 4.25-7.2 GHz, right where the tunable cavity is located. Without the filters,

the amplifiers exhibit compression of as much as 4 dB because they are saturated by wideband

noise.

As this signal detection setup is used to measure a resonator, it is worth considering the ef-

fects of non ideal conditions on the measurement outcome of a resonator. An ideal resonator was

represented in the plots of Figure 3.22, making perfect circles centered on the real axis and sym-

metric amplitude traces about the resonant frequency. As described in their paper on resonator

measurements[84], Petersan and Anlage state that
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Important alterations to the data occur when we take into account several aspects of

the real measurement situation. The first modification arises when considering the

crosstalk between the cables and/or the coupling structures. This introduces a complex

translation X = (I0, Q0), of the center of the circle away from its place on the real

axis. Secondly, a phase shift θ is introduced because the coupling ports of the resonator

do not necessarily coincide with the plane of the measurement. This effect rotates the

circle around the origin.

They then give the corrected complex transmission coefficient S̃21 as

S̃21 = (S21 +X) eiθ. (6.5)

The effects of these modifications to the ideal case are shown in Figure 6.7. The calibration

procedure used for the tunable cavity is to detune it as far from the region to be calibrated as

possible, do a through calibration, then return the cavity to the desired frequency. This calibration

gives data that is close to the ideal, though moving the resonator back noticeably changes both the

rotation and origin of the resonance in IQ space in the same way demonstrated in Figure 6.7.

Figure 6.7: Resonator measurement imperfections - The effect of cable/spurious structure
crosstalk and measurement plane/port offsets on resonator measurements. The ideal resonator is plotted
in red, the non-ideal in blue. The crosstalk offsets the IQ plot by X = (I0, Q0) and the measurement

plane offset introduces a rotation θ, which combine as S̃21 = (S21 +X) eiθ.
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6.3.1 SQUID amp

The SQUID amplifier was developed and made at NIST to be a very low noise cryogenic

amplifier[65][66][67], mass produced and professionally packaged. The amplifiers are made of Nb, so

they function at temperatures below 9 K, though the best performance is at the lowest temperature

the amplifier can be placed. Because of its very low power consumption, and therefore small heat

dissipation, it can be placed on the mixing chamber without noticeably heating the stage. Figure

6.8a shows a schematic of the SQUID amplifier. This SQUID amplifier is able to amplify effectively

at several GHz because the 50Ω input microwave line has been impedance matched to the high

impedance SQUID using a quarter wave resonator, which puts a voltage antinode and a current

node at the SQUID input coil. The quarter-wave resonator sets the amplification band, limiting it

to a few hundred MHz wide, and therefore must be chosen for the frequency of the specific device to

be measured. Figure 6.8b shows a photo of the amplifier in its custom box with bias circuitry and

without the lid. The bare box and connectors are also shown. Eccosorb CR-124 resin was painted

on the box lid to suppress free space box modes. The packaging includes a bias tee for injecting

bias current Ib, and a line for the flux bias current IΦ. These lines are both filtered in the fridge just

like the flux bias lines were filtered; with a low pass RC filter at 4 K and a copper powder encased

low pass filter on the mixing chamber. These two current drives effect the SQUID amplifier in a

Figure 6.8: The SQUID amplifier - a) Schematic of the SQUID amplifier, taken from [65]. The
red and blue lines represent the voltage antinode and current node, respectively, in the quarter wave
resonator. b) Photo of a SQUID amplifier packaged in a custom box with bias wiring, showing the
components.
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complex way, though a rough, heuristic rule is shown in Figure 6.9a. Changing Ib tends to change

the overall background gain, while changing IΦ changes the position in frequency and amplitude

of the gain peak. This peak is about 80 MHz wide 3 dB down, and is tunable across ∼200 MHz.

Because of the narrowness of the gain peak, the SQUID amplifier is designed to give gain at specific

frequencies. An amplifier with high gain near the top of our tunable cavity’s frequency range was

chosen. Its gain curve at 6.78 GHz is shown in Figure 6.9b, having a 1 dB compression point at

∼ −99 dBm, or ∼ 125 fW. As the single photon regime for the tunable cavity at 6.78 GHz is on

the order of 1 fW, the amplifier should be far from saturation during our measurements.

The SQUID amplifier bias current Ib and flux current IΦ must be optimized to get the highest

signal to noise ratio (SNR). This is efficiently done by measuring the SNR in high gain regions. A

sweep of Ib and IΦ at 6.78 GHz is shown in Figure 6.10a. Figure 6.10b are signal to noise measure-

ments at two bias currents. These measurements were done by measuring the gain response flux

curves with and without a microwave drive using a spectrum analyzer, then taking the difference.

The SQUID amplifier bias is optimized when biased at the highest SNR point.

Figure 6.9: SQUID amplifier bias changes and gain compression - a) The high gain region of
the SQUID amp is relatively narrow, usually a few hundred MHz, but is somewhat tunable. Roughly,
changing the current bias Ib changes the overall background gain, while changing the flux bias current
IΦ changes the position and amplitude of the gain peak. b) The SQUID amplifier’s 1 dB compression
point is measured here to be about -110 dBm, agreeing with [66], at 6.78 GHz.
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Figure 6.10: SQUID amplifier gain and SNR - a) SQUID amplifier gain was measured as the
current and flux bias were swept, while the microwave drive was at 6.78 GHz. b) The signal to noise
ratio was measured at the two bias locations indicated in a) by the grey dotted lines.

6.3.2 Network Analyzer

As discussed above, the network analyzer (Agilent E5071C) was used to drive the cavity for flux

readout after tunneling measurement, and was gated using a PIN diode. This was necessary since

the network analyzer did not have sufficiently controllable or accurate gating on its own, and the

drive to the cavity needed to be off when the qubit was being reset or manipulated and measured.

The network analyzer was operated in zero span mode, measuring S21, and triggered externally.

N points were taken, then uploaded to the control computer for conversion to a histogram, which

was then used to calculate an occupation probability. When not in use, the network analyzer was

left plugged into the microwave setup, but its output port was turned off.

6.3.3 IQ mixer

For dispersive measurement, the cavity signal is detected using homodyne mixing down to DC

with a quadrature-IF double-balanced mixer (Marki IQ-4509). Note that the labeling on the Marki

mixers for the I and Q ports is reversed from the way they are being used here. Following Gao[85]

and noting that in his equations a and b are swapped, the four port IQ mixer has the two inputs
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ALO = 1 and ARF = reiθ, and has the two outputs

I = I0 +AI cos(θ), Q = Q0 +AQ cos(θ + γ). (6.6)

γ is the phase difference between I and Q, and is nominally −π/2. Ideally there is no offset in the

IQ plane (I0 = Q0 = 0), and AI = AQ = A as one sweeps the phase θ from 0 to 2π, so that I and

Q trace out a circle of radius A, centered at the origin. Usually, however, IQ mixers trace out an

ellipse, as seen in Figure 6.11a. The ellipse major and minor axes (a and b), along with the angle

Φ can be used to characterize AI , AQ, and γ with the equations

AI =

√
a2 sin2(Φ) + b2 cos2(Φ), (6.7)

AQ =

√
a2 cos2(Φ) + b2 sin2(Φ), (6.8)

γ = α1 − α2, (6.9)

where

α1 = tan−1

(
a sin(Φ)

b cos(Φ)

)
, (6.10)

α2 = π − tan−1

(
a cos(Φ)

b sin(Φ)

)
. (6.11)

For a fixed frequency, different powers give different size ellipses, as shown in Figure 6.11b, forming

a cone as seen in Figure 6.11c. Each frequency has its own cone. By measuring the ellipse values

a, b, and Φ at different frequencies and powers we can come up with the functions AI (f, PRF ),

AQ (f, PRF ), and γ (f, PRF ) that describe each cone. The original RF signal can be found by
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Figure 6.11: IQ mixer nonidealities - a) Parameterizing the ellipse traced out by the IQ mixer at a
constant power and frequency. b) For a fixed frequency, decreasing the amplitude A of the signal gives
a smaller ellipse, c) which can be represented as a cone. Each frequency has its own characteristic cone.

plugging the values for AI , AQ, and γ into

r =


I

AI cos θ (cos θ 6= 0)

Q
AQ cos(θ+γ) (cos θ = 0)

(6.12)

θ =


tan−1 cos γ−g

sin γ (I > 0)

tan−1 cos γ−g
sin γ + π (I < 0)

(6.13)

where

g =
cos(θ + γ)

cos θ
=
AIQ

AQI
. (6.14)

The results of the mixer calibration were organized into a single calibration file. Each frequency

was one column, representing one ellipse in that frequency’s cone. Each power took a 7 row block,

so for n powers each column contained the ellipse parameters for a cone of n ellipses. The format

of a calibration file with only two different drive powers, and thus only two ellipses per frequency,

is shown in Table 6.1. For frequencies and powers between those listed in the calibration file, a
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f1 f2 . . . fN
A1 A2 . . . AN
I01 I02 . . . I0N

Q01 Q02 . . . Q0N

AI1 AI2 . . . AIN
AQ1 AQ2 . . . AQN
γ1 γ2 . . . γN

f1 f2 . . . fN
A1 A2 . . . AN
I01 I02 . . . I0N

Q01 Q02 . . . Q0N

AI1 AI2 . . . AIN
AQ1 AQ2 . . . AQN
γ1 γ2 . . . γN

Table 6.1: Calibration file format - A calibration file for a calibration of N frequencies, done at
two powers, making N columns and 2× 7 = 14 rows.

linear interpolation was done for each parameter.

6.3.4 Data acquisition card

The data acquisition card (Gage CS23G8) has two 8-bit channels that may be operated simul-

taneously as fast as 1.5 GS/s, and includes an onboard averaging feature. This averaging was not

a continuous average, but a sum over up to 1024 traces that is transferred to the computer to be

divided by the number of samples later. While there is a large increase in speed over transferring

one trace at a time for averaging by the computer later, it is still cumbersome compared to a

running average as its PCI bus is limited to a 133 MB/s transfer rate. For instance, one 10 µs

trace at 1.5 GS/s would take at least 110 µs to transfer. If a total of around 1,000,000 averages are

desired, then the total transfer time is 110 µs × 1000 = 110 ms. Doing all those averages on the

card would be much more efficient as only one transfer would be needed.

The data acquisition card has two undesirable features that are apparent in the data, both seen

in Figure 6.12. The most obvious feature is the spike at about 4.5 µs. This feature is always

present, and must be worked around when taking data. Also clear, especially in the time trace
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Figure 6.12: Gage data acquisition card background - a) Time traces with just the card, the
card and the IQ mixer with the LO port plugged in but not the RF port, and the card with the full
amp chain. The inset is a zoomed in portion of the bare card data showing the periodic nature of the
background signal. There is also a single spike at about 4.5 µs. b) FFTs of the time trace data reveal
that there is a periodic signal spaced by 93.76 MHz. 10 MHz sidebands appear when the LO port of
the mixer is driven, suggesting the generator’s clock is bleeding through.

inset, is a periodic spurious background signal, the second feature. The FFT of the background

data shows amplitude spikes every 93.76 MHz. Whether this signal is from a source on the card

or is being picked up from the environment by the card, it is always present. When the IQ mixer

and LO source are added (with the RF port capped) 10 MHz sidebands appear next to the 93.76

MHz-spaced peaks. These most likely are from 10 MHz clock bleeding through the LO port from

the generator. Because of their periodicity, these spurious signals may be subtracted from time

trace data. All time trace data taken by the DAQ card and shown in this work had this correction

applied.

6.4 Control program architecture

The control and data taking program was written in LabView 8.5 and consists mainly of three

for loops, schematically shown in Figure 6.13. Instruments were controlled through GPIB and USB

ports, with the exception of the data acquisition cards which came with ready made proprietary

LabView code for communication through the PCI bus. For each plot, the program saves an ASCII

log file with all user-controlled settings and notes written for the specific plot, a JPEG screenshot

of the plot for easy reference, an ASCII raw data file containing the data before processing, and an
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Figure 6.13: Control and data taking program architecture - The control and data taking
program mainly consists of three for loops, representing the sweeps on three axes: the y-axis is the inner
loop, the x-axis is the middle loop, and the plot axis is the outer loop. The plot axis is where a single
value is changed for each new plot. The data flow is left to right.

ASCII plot data file containing the data after processing. The files are named using the convention

qbYYMMDD.hhmmss.yVar-xVar-pVar.xxx, where yVar, xVar, are pVar abbreviations for the y−,

x−, and plot−axis variables being swept, and .xxx represents the appropriate file extension. The

characters after qb are a time stamp, for uniquely labeling the files. After the x−axis and y−axis

loops are finished, the log file is updated to reflect any changes to the notes written by the user.

The outer plot loop is where housekeeping for the instruments is done, things like clearing

buffers and setting sensitivity ranges. The three axis arrays are made, the plot axes are adjusted,

and the log file is written. Dependencies are determined here, and the file containing all points for

the Tektronix AWG5014B is written as well. Determining dependencies means both selecting which

instruments will need to be updated at each point, but also choosing what non-axis variables need

to be changed to accomplish the user’s demands. For instance, it is common to take spectroscopy

data only in a narrow range around the f01 transition since data outside of this range is usually

not useful and leads to very large files and long acquisition times. This means that the y−axis

drive frequency array depends on the value of the x−axis flux bias according to some previously

determined polynomial; the y−axis depends on the value of each x−axis point. This extra logic step

can be complex, but is valuable because it improves efficiency; updating every single instrument,

whether it changed or not, would be time intensive as some instruments are slow to respond to
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changes.

The y−axis array is made for each x−axis loop and sent to the y−axis loop for application.

The instruments that change only when the x−axis changes are updated during the x−axis loop.

After the y−axis loop finishes, a JPEG screenshot of the plot is taken and the already processed

plot data is saved.

During the y−axis loop the pertinent instruments are changed at each y value, the instruments

are triggered, a delay occurs while the instruments run, then the computer retrieves the data from

the appropriate instrument. The raw data (i.e. histogram data or IQ data) is saved, as well as

being processed into the form necessary for plotting, such as occupation probability or phase. The

data are then plotted.

For efficient data viewing and analysis a data plotter was also written in LabView 8.5. Using

the path to the JPEG screenshot file, it recalls all the information from the log file and all the data

from the plot data file. This tool was exceedingly useful for on-the-fly analysis of data for use in

later data scans. For example, it readily fits most spectroscopy in order to get a polynomial file

relating the flux bias to the f01 transition frequency to be used in later scans.

While LabView provides very convenient user interface, efficient plotting and data manipulation

tools, and simple, robust instrument communication in its NI-VISA tools, it lacks the flexibility of

a scripting platform like Matlab. LabView does have its own scripting language, Mathscript, as

well as a port to Matlab, but using a scripting user interface on the program’s front panel is very

slow as LabView re-compiles the script at each loop iteration. This may be avoided by only writing

the Mathscripts in the back panel, but this complicates the user interface and could lead to code

corruption. The control and data taking software had front panel scripting user interfaces, but they

were disabled when not in use, for faster operation. Most dependencies could be controlled using

simple polynomials, which are very efficient to use.
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7

Tunneling measurements

7.1 Device with DC SQUID

The data taken with a DC SQUID were done using a via-style junction device, with the purpose

of demonstrating control over the entire Bloch sphere. This required characterizing the qubit

potential using spilling points, finding the transition frequency f01 as a function of applied flux,

and driving Rabi oscillations so that π− and π/2−pulses may be identified for use in tomography.

T1 was also measured as part of the qubit characterization procedure.

7.1.1 Steps

Qubit steps are the first characterization of a metastable phase qubit, and are described detail

in Section 3.1.1. In short, the qubit is kept in its ground state and the DC flux bias is swept to

see where the qubit spills into an adjacent well. The sweep is done with the initial well shape at

or beyond each extreme of the sweep range in order to find the hysteretic, or multi-well, region.

Steps data for the device are shown in Figure 7.1, along with arrows indicating the sweep direction

from the two initial states. This data is a combination of two plots, one for each sweep direction,

summed and normalized. The color axis of this plot is the number of switching events detected at
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Figure 7.1: Via-style junction metastable phase qubit steps - Qubit steps for characterizing
qubit hysteresis, taken using DC SQUID readout. The color axis is the number of voltage switching
events. Two datasets have been summed and normalized for clarity, and arrows are included to show the
sweep direction. From the steps data one can get values for Φ0 and ΦC , which can be used to calculate
the coupling between the qubit and bias line MQuB as well as the hysteresis βL.

a given time for a given flux. The time axis of this plot is proportional to the current in the qubit

loop because of the time domain readout procedure outlined in Section 3.2.5.1. From the steps

data we can find the coupling MQuB between the bias line and the qubit, as well as βL. Since the

current driven by equipment at room temperature is known and the separation between tunneling

events is always Φ0, the coupling is MQuB = Φ0/I. The distance from the middle of a given step

to the end of the step is ΦC . From this steps dataset, MQuB = 2.3 pH and βL = 2.0. The steps

also allow one to find the readout flux, which is in the middle of either of the double well potential

regions of the step to be operated on.

7.1.2 Spectroscopy

Another characterization of the qubit’s potential well shape may be done by finding the transi-

tion frequency between the ground and excited states, f01, for a variety of flux biases. This is easily

done by sweeping the qubit drive generator through a range of frequencies at each flux bias and

looking at the response. When the drive is on resonance with the qubit, the tunneling rate from
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the qubit well to the next well increases. A long drive pulse is used (1 or 2 µs) so that the Rabi

oscillations drop down to a constant P|1〉 = 0.5 by the end of the pulse, giving consistent results.

If short pulses were used the spectroscopy data would be spotty, since the oscillation could be at a

Rabi maximum or minimum when the qubit is measured. Spectroscopy gives a useful relationship

between flux bias and f01. Figure 7.2 shows the spectroscopy for the via-style junction metastable

phase qubit coupled to a readout DC SQUID. Although several splittings are seen, a dominant

splitting is seen at 9 GHz, the location of a transmission line cavity coupled to the qubit. This

cavity was used for photon swap experiments[41] which are outside the scope of this work and

therefore not discussed. The other splittings are spurious TLSs, described in Section 2.2.1.1, which

illustrate the need for small area junctions that show few or no TLS splittings. The presence of so

many spurious TLSs in this device required a high resolution spectroscopy plot like the one above

to be able to choose a clean region without too many spurious TLSs in which to operate the qubit

so that energy exchange with the spurious TLSs will be minimized. The clean region at 8.1GHz

was chosen for further characterizing and operating the qubit.

Figure 7.2: Via-style metastable phase qubit spectroscopy - Qubit spectroscopy, with a fixed
cavity at 9 GHz. The other splittings are all spurious TLSs. The clean spot at 8.1 GHz was chosen as
a spot for performing the other characterizations.
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7.1.3 Rabi, T1, Ramsey

Rabi and T1 data were taken after sweeping the drive frequency and power to optimize the

microwave signal. The two plots are shown in Figure 7.3. Notice that there is a beating on top

of the Rabi oscillations that causes the data to be out of phase with the model between about

t = 150 − 250 ns, and again at t = 300 − 400 ns. This is due to an interaction with a weakly

coupled TLS. The TLSs are also partly responsible for the low contrast of 0.45, since they are not

just removing energy while the qubit is being driven, but also as the qubit is being measured, as

the fast flux pulse moves the qubit across the spectroscopy toward spilling, crossing all the TLSs

along the way[25]. The data energy relaxation data are fit with T1 = 140 ns.

Using two π/2−pulses with a z−pulse of varying length between them gives the Ramsey fringes

seen in Figure 7.4. Fitting the Ramsey fringes near the center of the plot, close to zero detuning,

gives T2 = 50 ns, suggesting heavy dephasing since T2 � 2T1. This is somewhat understandable,

Figure 7.3: Via-style metastable phase qubit Rabi oscillations and T1 - a) Rabi oscillations,
with a contrast of about 0.45. There is a low frequency beating between the qubit and a weakly coupled
TLS, evidenced by the data changing phase slightly. b) Energy relaxation measurement, giving T1 = 140
ns.
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Figure 7.4: Via-style metastable phase qubit Ramsey fringes - a) Ramsey fringes. b) A single
trace at z−pulse= −0.18 V and the fit. The result of fitting the curves near the center of the plot gives
T2 = 50 ns.

since the data were taken close to spilling, where the spectroscopy slope is steep; the steep slope

means that small changes in flux bias from noise make large changes in frequency. Any 1/f noise

on the bias line will have a large effect on the dephasing due to the steep slope. This device did

not have any magnetic shielding around it other than a large mu-metal shield around the fridge at

room temperature.

7.1.4 Tomography

Now that the π−, π/2−, and z−pulses are known and the time scales shown to be sufficiently

long, tomography may be attempted. A full tomographic sweep was done on four different initial

states, described in Section 3.1.2. Each of the states |0〉, |1〉, (|0〉+ |1〉) /
√

2, and (|0〉+ i|1〉) /
√

2

was prepared, then a second pulse of varied phase and amplitude was applied to do the tomographic

inspection of the state. The results for each of these states is plotted in Figure 7.5.

Doing full tomography on an initial state gives far more information than is required to describe
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Figure 7.5: Full tomography data - Full tomography on four states, sweeping the tomography pulse
amplitude and phase. The initial states are shown above each plot.

the location of the Bloch vector. Doing just three orthogonal pulses is sufficient to fully describe the

position of the Bloch vector. The three pulse method (I, 90x, 90y) was implemented on the initial

state (|0〉+ i|1〉) /
√

2 (prepared with a π/2−pulse), but with a z−pulse to intentionally detune

the potential away from the initial potential’s transition frequency and cause the Bloch vector to

precess. This precession combines with the energy decay T1 to trace out a spiral on the Bloch sphere

in time. The pulse sequence is shown in Figure 7.6a, the time domain results and a fit for the three

tomography pulses is shown in Figure 7.6b, and the plot of the three coordinates from the time

domain in a 3D space is shown in Figure 7.6c, with the fit shown in red. This protocol has been

Figure 7.6: Tomography data of π/2 state decay - Three-pulse tomography of a precessing,
decaying (|0〉+ i|1〉) /

√
2 initial state.
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previously implemented in metastable phase qubits[58]. This practical application of tomography,

combined with the full Bloch sphere plots from Figure 7.5, demonstrate successful implementation

of qubit state tomography measurement capabilities.

7.2 Device with tunable cavity

The tunable cavity design was implemented with shadow evaporated junctions on a single wiring

layer without depositing any insulators. The purpose of this device was to show that both tunneling

and dispersive measurement schemes may be used on the same device. However, as this chapter is

concerned with tunneling measurement only, the dispersive data will be shown in the next chapter.

Here, in addition to characterizing the tunable cavity, the typical qubit characterizations will be

performed: qubit steps, spectroscopy, Rabi oscillations, energy relaxation, and Ramsey fringes.

The resonant nature of the tunable cavity also allows two other characterizations. First, qubit

energy loss through the cavity via the Purcell effect is shown to be minimized with the cavity far

detuned, then present when it splits the qubit spectroscopy. This not only demonstrates the Purcell

effect in this device, but also demonstrates that by using a tunable cavity the intrinsic qubit energy

loss rate can be recovered when the cavity is far detune. Second, the extra photons generated from

a tunneling event during ring-down in the adjacent potential well are shown to appear in the cavity,

which disturbs any prepared cavity states.

7.2.1 Tunable cavity characterization

The cavity spectroscopy was taken using a network analyzer for multiple periods, shown in

Figure 7.7. Fitting this data shows that the tunable cavity is single valued with βL = 0.8, and has

almost 2 GHz of range. As discussed in Section 4.2, the large series inductance Ls that is used to

increase the cavity’s internal quality factor decreases its frequency range. Since there are multiple

periods the flux bias axis can be calibrated in units of Φ0, which then allows for a calculation of
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Figure 7.7: Tunable cavity spectroscopy - Flux bias to the tunable cavity was swept, and its
frequency measured. Its frequency swings between 4.9 and 6.8 GHz. A fit to the spectroscopy gave
βL = 0.8 and Ic = 0.38 µA, close to the design values. The top of one of the Us is shown in higher
resolution, revealing a spurious 10 MHz splitting at about 6.75 GHz.

the coupling between the bias line and tunable cavity. This data gives MCavB = 1.7 pH, close the

the design value. Figure 7.7 also shows a higher resolution magnified view of the top of a tunable

cavity curve, revealing a spurious 10 MHz splitting at about 6.75 GHz. This splitting remained in

the same location with the same size for several cooldowns, suggesting that it was not a spurious

TLS from a materials defect. It is likely a slot mode resonance, resulting from ground planes at

different potentials; the crossover bonds used to connect the ground planes (Section 5.3.2) may

have not been sufficient to suppress this spurious mode.

Moving the qubit flux while watching the tunable cavity spectroscopy may be used to calculate

the cross coupling between the qubit bias line and the tunable cavity. This is useful for creating

calibrations that keep the tunable cavity frequency constant while moving the qubit flux. For this

device, the coupling between the qubit flux bias and the tunable cavity was MCavQuB = 0.2 pH.

Figure 7.8a is a power sweep of the cavity when tuned to its maximum frequency at 6.78 GHz.

The drive powers in the legend are calculated by knowing the generator power and the loss in the

fridge. The highest power trace shows the cavity bifurcating. Figure 7.8b is a Lorentzian fit to one

of the traces in the linear regime according to Equation 3.11, with the power to the device at about
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Figure 7.8: Tunable cavity power sweep and fit - a) The tunable cavity is tuned to its maximum
frequency at 6.78 GHz, and the drive power to the cavity is swept. The drive powers reported in the
legend are calculated from the generator and losses in the fridge, referenced to the plane of the SMA
connectors on the box. b) A Lorentzian fit to one of the traces in the low power regime.

−120 dBm. The fit gives f0 = 6.780 GHz, S0 = 0.031, Q = 278, Qint = 8973, and Qext = 287. The

cavity quality factor is clearly dominated by the coupling capacitor and 50Ω line, meaning most of

the signal is recovered by the amplifier chain instead of being lost to the environment.

The IQ plot of the tunable cavity while at its maximum frequency is shown in Figure 7.9. The

kink in the data is from the 10 MHz spurious resonance at 6.75 GHz, and the resonant frequency

of the cavity is marked with a blue dot. The rotation of the IQ circle is a result of impedance

mismatches along the microwave line. This could be corrected using Equation 6.5.

Figure 7.9: Tunable cavity IQ plot - The IQ plot of the tunable cavity at fmax, with the resonant
frequency marked with a blue dot. The kink is the spurious 10 MHz splitting at 6.75 GHz
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7.2.2 Qubit steps

Moving the tunable cavity to a flux sensitive bias allows the cavity to sense changes in the qubit

flux state. Figure 7.10 is a composite plot of metastable phase qubit steps measured using the

tunable cavity. Data was taken by sweeping a DC bias to the qubit first from the left, then from

the right, to get the qubit hysteresis. These two datasets were then added and normalized. The

drift in the data is due to spurious cross coupling between the qubit bias and the tunable cavity. As

this drift moves the cavity higher in frequency it becomes less sensitive to changes in flux, showing

the need to choose a flux sensitive bias point.

Because the qubit steps were taken with a slow DC bias source (measurements on the order of

seconds) and not a fast arbitrary waveform generator, the tunneling events happen much earlier

than they would if measurements were done on the order of microseconds. Using these rough steps

as a guide for determining where to reset, operate, and readout the qubit, one may use fast flux

sources to then find the tunneling edges more precisely with an S-curve measurement shown in

the inset to Figure 7.10. The arrows point to the three locations where the S-curves need to be

Figure 7.10: Qubit steps taken with a tunable cavity - Qubit steps. The tunable cavity frequency
was monitored while the flux bias to the qubit was swept, first from the left and then from the right.
The two datasets have been summed and normalized to produce this plot. The drift in the signal is
because of spurious coupling between the qubit bias coil and the tunable cavity; the cross coupling
was designed to be zero. The inset shows a tunneling S-curve, used for more precisely determining the
location of step edges.
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taken in order to obtain values for Φ0 and ΦC . From the Φ0 measured here the coupling is found

to be MQuB = 10.8 pH, more than five times higher than designed. As discussed in Section 4.1.2,

this device had a bias coil that did not have a dedicated path return for the return current, which

suggests that the return path taken through the ground plane added coupling between the bias line

and the qubit. From the ΦC measured here, βL = 2.5 and Ic = 0.33 µA. The shadow evaporated

junction on the qubit was designed to be identical to the junction on the tunable cavity, and their

critical currents agree within 10% of the design value.

7.2.3 Measure pulse and retrapping

As discussed in Section 3.2.1, the tunneling measurement may return errors if a tunneled state

tunnels back into the original well, being read out as a |0〉 even though it was measured to be a |1〉.

This happens when the qubit lifetime is sufficiently long that the tunneled state does not decay

before the measure pulse has finished. One solution to this problem is to just make the measure

pulse long enough that the tunneled state can decay before the measure pulse is over. The result

of this approach is shown in Figure 7.11. The longer measure pulse clearly stops retrapping,

Figure 7.11: Square measure pulse and retrapping - For a 50 ns square pulse, retrapping is
definitely occurring, evidenced by a maximum tunneling probability of < 0.4. The maximum contrast
is 0.17. The maximum tunneling probability increases to 1 when the measure pulse is made 1 µs longer,
and has a 0.22 maximum contrast.
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Figure 7.12: Anti-retrapping measure pulse contrast - Using an anti-retrapping measure pulse
shape, shown in the inset, gives a much higher contrast of 0.67 between the |0〉 and |1〉 states.

but it also gives more time for the |0〉 state to tunnel through the barrier and give a false |1〉 state

result.

Using an anti-retrapping measure pulse gives much higher contrast, about 0.67, as seen in

Figure 7.12. While using the anti-retrapping measure pulse increases contrast, effects that decrease

contrast may still be present. These effects include thermal excitation from the ground state and

excess flux noise on the bias line.

7.2.4 Spectroscopy, AC Stark shift

To perform spectroscopy measurements, a DC flux source held the qubit at its double well

readout spot with no fast fluxes applied. An arbitrary waveform generator was be used to apply

fast flux pulses to move the qubit to other potential well shapes for qubit manipulations, as well as

to apply the measure pulse. This allowed access to the entire qubit step, as shown spectroscopically

in Figure 7.13. A slice of the spectroscopy at its highest frequency is shown in the inset. The

qubit was driven with enough power to excite transitions beyond the f01 transition, which gives

a measurement of the relative anharmonicity αr = (f01 − f12) /f01 = 0.23% at the highest qubit

frequency, also the deepest potential well. This small relative anharmonicity shows that the qubit
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Figure 7.13: Qubit spectroscopy taken with a tunable cavity - Metastable phase qubit spec-
troscopy, taken using a tunable cavity to readout the flux state after a tunneling measurement. Taken
across an entire step. The inset is a slice of the data at the maximum qubit frequency. The device was
being driven hard enough to excite higher levels, allowing a measurement of the relative anharmonicity
αr = 0.23% at the maximum qubit frequency. The qubit potential at different flux states are also shown.

is very harmonic, and thus quite cavity-like, at its highest frequency. The potential configurations

at various qubit flux biases are also shown.

This qubit had no spectroscopically visible splittings, as can be seen in a zoomed in portion

of the spectroscopy shown in Figure 7.14a, which shows data all the way down past tunneling.

This spectroscopy is taken with the tunable cavity at its minimum frequency, fCav = 4.9 GHz.

Figures 7.14b and 7.14c show a small section around the maximum frequency of the cavity with

and without the cavity present. The qubit-cavity splitting is 2g/2π = 80 MHz wide. Because of

crosstalk between the tunable cavity bias line and the qubit, the flux bias axis of Figure 7.14c was

adjusted to match the flux bias axis of Figure 7.14b.

High power spectroscopy was taken to find the f02/2 and the f12 transitions, and is shown in

Figure 7.15. The relative anharmonicity αr of the qubit varies across this range from about 0.4%

to about 3.6%. This weak anharmonicity suggests that when doing dispersive readout, reported
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Figure 7.14: Qubit spectroscopy with and without cavity - a) Metastable phase qubit spec-
troscopy. No splittings seen, and the data goes all the way down to tunneling at around 6.2 GHz. These
data have been leveled so that the noise floor of each frequency sweep is at 0. b) Small spectroscopic
region, with the cavity detuned to its lowest frequency. c) Cavity at its maximum frequency, interacting
with the qubit to cause a splitting 2g/2π = 80 MHz wide. The flux bias axis for the last plot had to be
adjusted for spurious crosstalk between the tunable cavity flux bias line and the qubit.

Figure 7.15: High power spectroscopy - High power qubit spectroscopy to measure the relative
anharmonicity αr across much of the spectroscopy range. Thermal activation of the |1〉 state allows the
f12 transition to be seen.
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in Chapter 8, a three level atom model is needed to model the data, as discussed in Section 2.4.2.

Note also that the f12 transition is apparent in this data, even though the f01 transition is not

being simultaneously driven. This is partially due to a native thermal population of the |1〉 state,

allowing the f12 transition to appear with only a single tone applied. As discussed in Section 6.1.1,

the light attenuation on the fridge was allowing 0.1 to 0.2 thermal photons through to the device,

a small but not insignificant population that appears with sufficient drive power.

As derived and explained in Sections 2.4.1 and 3.3.2, the AC Stark shift is the change in qubit

frequency f01 with the number of photons in the cavity according to ∆fac = 2ng2/2π∆01. For our

device the AC Stark shift was measured, with the data shown in Figure 7.16. The fit to the data

gives the slope 2.3 photons/fW , a calibration that may be used to put only one photon on average

in the cavity at a time for doing dispersive measurement. The data points at higher power were

not included in the fit as the cavity is being driven nonlinear here. The power axis is the estimated

power delivered to the reference plane at the SMA connectors on the box holding the device. This

power is estimated by measuring the power at the room temperature using a spectrum analyzer and

subtracting the value of attenuation between the room temperature fridge input and the reference

plane at the box, measured using a network analyzer while the fridge was at room temperature.

Figure 7.16: AC Stark shift data - The AC Stark shift and fit. For this device, fQu = 6.46 GHz,
fCav = 6.78 GHz, and g/2π = 40 MHz. The fit gave a slope of 2.3 photons/fW . Higher power points
were excluded from the fit as the cavity is nonlinear here.
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7.2.5 Rabi, T1, Ramsey

Driven Rabi oscillations were measured at several places across the spectroscopy. One of these

datasets is presented in Figure 7.17. The first plot shows both the f01 = 7.454 GHz and the

f02/2 = 7.409 GHz transitions, and is used to find the f01 precisely by performing an FFT on each

data slice, fitting the periods vs. drive frequency, and finding the drive frequency that gives the

maximum period. Figure 7.17b is a longer trace of Rabi oscillations at f01, and is fit to theory.

The fit gives fRabi = 28 MHz, with a decay time of T ′ = 520 ns. Sweeping drive amplitude changes

the Rabi oscillation frequency linearly, as shown in Figure 7.17c.

The Rabi oscillation data is used to choose a π−pulse for other measurements. As discussed

in Section 3.1.3, the duration of the π−pulse needs to be sufficiently long so that it doesn’t excite

transitions other than the f01 transition. While this is best done by measuring the spectral compo-

nents of the pulse at the qubit’s various transition frequencies, the effect of different pulse durations

on the |1〉 state S-curve shows the effect, seen in Figure 7.18. The 29 ns and 43 ns pulse lengths did

not significantly populate the higher energy levels since the shape of the beginning of the |1〉 state

S-curve is unchanged[55], though near the top of the S-curve there is a difference between the two.

The 29 ns pulse gives a higher contrast since T1 effects have less time to effect the qubit during

Figure 7.17: Rabis oscillations in a metastable phase qubit - a) Driven Rabi oscillations,
sweeping frequency, to find f01 precisely. The oscillations on the left side of the plot at 7.409 GHz are
the f02/2 transition. b) A long, single Rabi oscillation trace at f01 = 7.454 GHz, fit to theory. c) The
change in Rabi frequency with drive amplitude is linear.
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Figure 7.18: S-curves and π−pulse duration - |0〉 and |1〉 state S-curves for various π−pulse
durations.

the pulse. The 15 ns pulse clearly shows contamination by other frequency components in the

beginning of the S-curve while not significantly changing the overall contrast. This contamination

is seen at the beginning of the S-curve because the higher, accidentally populated levels are closer

to the top of the metastable well’s barrier, allowing them to tunnel earlier than the first excited

state. While the higher level contamination may not affect the contrast, it will change the energy

relaxation rates and the ability to manipulate the qubit in a simple two-level manifold. The 8 ns

pulse seems dominated by higher transitions because of its significantly changed S-curve beginning,

while offering even higher state contrast. Of these pulses, the 29 ns pulse seems to offer the highest

contrast without significant higher level transition contamination.

Now that the π−pulse frequency, amplitude, and duration has been selected, a T1 measurement

may be performed reliably. A T1 measurement at 8.18 GHz is shown in Figure 7.19, with a fit

giving T1 = 655 ns. This data is smoothly decaying, suggesting little to no significant interaction

with individual TLSs[31]. From Equation 4.3, showing the loss from the qubit to the bias line, it is

clear that part of the loss is due to the five times overcoupling between the qubit bias line and the

qubit. For this device, with M = 10.8 pH, T1 would be 938 ns if the bias line were the only loss

channel, while if it had ended up as designed then the bias line T1 limit would have been 23.4 µs.
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Figure 7.19: T1 in a metastable phase qubit - A T1 measurement at f01 = 8.18 GHz, fit to an
exponential with T1 = 655 ns.

While this is a significant improvement in isolation, the qubit is still limited by other loss channels

since the measured T1 is still less than the bias line limited T1 calculation. The T1 measurements

taken across the qubit spectroscopy will be presented in the next section, where loss through the

cavity, characterized by the qubit T1, is considered.

Ramsey fringes taken at f01 = 7.39 GHz are shown in Figure 7.20. When the time traces are

fit to P|1〉 = 0.5 cos (ωzt) e
−(t/T2)2

+ 0.5 (see Section 3.1.4), the Ramsey frequency changes with

z−pulse amplitude linearly, shown in the Figure, with an average T2 = 106 ns. While this is a

low coherence time compared to some other qubit types, it is a good coherence time compared to

other metastable phase qubits. Some of the decoherence could be due to the strong overcoupling

between the qubit flux bias line and the qubit; noise on the bias line is transmitted to the qubit

five times more strongly than designed.

7.2.6 The Purcell effect

The Purcell effect in cQED, described in Section 2.4.3, is the energy loss of the qubit to the

environment through the cavity. With the tunable cavity circuit we have built here, the Purcell

effect may be clearly observed by first moving the cavity far from the qubit and measuring the

125



Figure 7.20: Ramsey fringe experiment on a metastable phase qubit - Ramsey fringe mea-
surement at f01 = 7.39 GHz. Fitting the time traces gives the linear Ramsey frequency plot on the
right, as well as giving a Ramsey decay time T2 = 106 ns.

qubit energy relaxation time, then tuning the cavity back in resonance with the qubit to see the

loss enhancement appear. The data for this experiment are shown in Figure 7.21. The data were

taken for the tunable cavity fully detuned to its minimum frequency at fCav = 4.90 GHz (red dots),

then tuned to its maximum frequency fCav = 6.78 GHz (blue dots). Since the energy loss rate γP

can be found by plugging data from spectroscopy into

γP = κ
g2

∆2
01

=
2πfCav
QCav

g2

∆2
01

, (7.1)

the intrinsic energy relaxation time (green dots) can be found by doing some simple algebra,

γq = γ1 − γP . Fitting the result to a polynomial allows the resulting curve (green line) to be

used to model the two datasets, shown as red and blue solid curves. The values used in these

calculations were fCav = 4.90 or 6.78 GHz and QCav = 82 or 278, and g/2π = 40 MHz, numbers

obtained from earlier measurements. Clearly the intrinsic energy relaxation time is not simply

inversely proportional to frequency as would be expected from dielectric loss mechanisms. The

mechanism for this more complicated frequency-loss relationship is unknown.

These two datasets clearly show that by detuning the cavity far from the qubit, the intrinsic

qubit loss rate may be nearly recovered. This allows the qubit to be operated with high T1s across

a large range, overcoming a significant limitation of fixed cavity cQED systems. One may detune
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Figure 7.21: Purcell effect on a qubit from a tunable cavity - Qubit T1 data with the tunable
cavity at 4.90 and 6.78 GHz, to see the Purcell effect directly. a) The red and blue arrows indicate the
cavity location when fCav = 4.90 and 6.78 GHz, respectively, and the grey dashed line is the minimum
available qubit frequency. The procedure for modeling the data is as follows: b) first, the Purcell
loss rate γP is plotted as red and blue dashed lines using the quality factor found from spectroscopic
measurements. Since the overall T1 is represented in the data, the intrinsic qubit loss rate γq is c) then
found and plotted as green dots. These dots are fit to a polynomial, the solid green line. d) Finally,
the result of the fit to the intrinsic decay time is then used to plot the model corresponding to each
dataset as red and blue solid lines. For the red data fCav = 6.78 GHz and QCav = 278. For the blue
data fCav = 4.90 GHz and QCav = 82. The coupling used was g/2π = 40 MHz.
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the cavity during qubit operations that require long T1s, then move the cavity near the qubit

for measurement. This specific procedure is clearly possible, though was not attempted with this

device.

7.2.7 Tunneling photons poisoning the cavity

As discussed in Section 3.2.1, a tunneling event radiates as the state rings down in the well it

tunnels into. Since our tunable cavity is strongly coupled to the qubit, when the frequency of the

ringing well is on resonance with the cavity the radiated photons will be transferred into the cavity.

This effect has been indirectly observed[61] by watching the state of a second qubit on the other

side of a fixed harmonic cavity, but never before by direct observation of the cavity itself.

The pulse sequence used to observe the photons ringing down after tunneling is shown in Figure

7.22. The qubit is reset to its ground state, then the drive to the cavity is turned on to about the

single photon level. The qubit is moved to a shallow-well operate flux, a short (5 ns), square

measure pulse is applied, then the qubit is returned to the same shallow-well operate flux. After

about 4 µs the qubit is returned to the reset flux and the drive to the cavity is turned off. The

cavity is monitored during this entire sequence, and we watch for extra photons to enter the cavity

and then decay out to the feedline and amplifier chain. The anti-retrapping measure pulse was not

used here, as flux crosstalk from the qubit bias during the long ramp may have altered the results

in a complex way.

The data showing ring down photons in the cavity after a tunneling measurement is shown

in Figure 7.23. A signal indicating ring down photons present in the cavity is clear when a

tunneling event happens. Fitting its decay time gives Tdecay = 220 ns, which is much longer than

the cavity response/decay time TCav = Q/ωCav = 6.5 ns. This discrepancy implies that the ring

down photons are being fed to the cavity over a 200 ns period, as the state slowly decays. This

is reasonable since the qubit has been measured to have a T1 on the order of several hundred
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Figure 7.22: Pulse sequence for measuring ring down photons - The qubit is forced to tunnel
by a short (5 ns) measure pulse and rings down, all while the cavity is being monitored.

Figure 7.23: Ring down photons in cavity - a) Time traces for an array of measure pulse ampli-
tudes, with the first and last traces plotted in b) to show the signal with and without a tunneling event
occurring. The cavity is clearly populated when a tunneling event occurs. A tunneling event occurs
again when the operate flux goes back to the reset potential well since the tunneled state now must
tunnel back into the original well, again giving ring down photons to the cavity.
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nanoseconds near f01 ≈ fCav = 6.78 GHz. The ring down signal does not go down to its previous

level after the measure pulse, since the tunneling event changes the flux state seen by the tunable

cavity by Φ0, which shifts the frequency of the cavity. Note that the second tunneling event, when

resetting the qubit, goes down to the non-measure pulse level. The potential is single valued at the

reset spot, so the flux state seen by the cavity is always the same, regardless of whether a tunneling

event happened.

7.2.8 Multiplexing

One advantage of microwave readout is that it is easily multiplexed, with little extra chip area

used. Although it is not the focus of this work, some early devices were multiplexed to show proof

of concept. Figure 5.1c is an optical micrograph showing four tunable cavities with different size

vacuum gap shunting capacitors on the same microwave feedline and sharing the same flux bias

line. The spectroscopy data from this device is shown in Figure 7.24. These tunable cavities were

made with the less reliable via-style Josephson junctions, accounting for the clearly different values

of βL for each device. The multiplexed devices where not pursued further since the complexity

of understanding a single device would be further compounded by having four devices moving in

the same frequency space. However, this extra complexity will need to be explored in the future

if frequency multiplexing for qubit measurement is to be used for efficient wiring schemes when

building a quantum processor.
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Figure 7.24: Multiplexed tunable cavities - Four tunable cavities with different shunting capacitors
multiplexed on the same microwave line.
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8

Dispersive measurements

8.1 Metastable phase qubit and tunable cavity device

The device used for the dispersive measurements in this chapter is the same device used for

flux readout with a tunable cavity from the last chapter. It is a shadow evaporated Al/AlOx/Al

Josephson junction on a single Al wiring layer. In the last chapter the device was shown to be

useful as a flux magnetometer for reading out the qubit flux state after a tunneling measurement.

With the device we characterized the qubit, showed that the tunable cavity allows this device to

mitigate the Purcell effect losses that are always present in fixed cavity devices, and we directly

observed ringdown photons entering the cavity after a tunneling measurement of the qubit. To avoid

the drawbacks of tunneling measurement, namely the destruction of the qubit and the emission of

ringdown photons after measurement, in this chapter the tunable cavity will be used to dispersively

measure the qubit. Dispersive measurement is a non-destructive projection measurement of the

qubit state that does not emit the chirped ringdown pulse of the tunneling measurement. The

most significant drawback of dispersive measurement is the enhanced loss from the qubit to the

environment through the cavity, via the Purcell effect. Since we have already demonstrated that

the Purcell effect loss can be mitigated by dynamically tuning the cavity, the demonstration of
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dispersive measurement will complete the picture of a technologically useful device for quantum

computing applications.

8.2 Spectroscopy

Spectroscopy of the tunable cavity has been presented in the previous chapter, in Section 7.2.1.

Cavity spectroscopy data showing the tunable cavity fixed at its maximum frequency while the

qubit flux bias is swept is shown in Figure 8.1. At its maximum frequency the tunable cavity is

flux insensitive, so any spurious cross coupling between the qubit flux bias and the cavity will have

a minimal effect, just as the flux jump from a tunneling event will not be noticeably sensed by the

cavity. The zero bias point for the qubit in Figure 8.1 is its maximum frequency, far above the

cavity. But when the qubit crosses the cavity at 6.78 GHz on either side of the zero bias point,

splittings are seen.

If the tunable cavity is biased to a flux sensitive location, the tunneling events at the step edges

will be visible as steps. Figure 8.2 shows tunable cavity spectroscopy, moving the qubit bias, for

two different flux sensitive cavity biases. Both plots show both qubit-cavity splittings as well as

qubit step edges. The lower frequency cavity bias is more flux sensitive, so the step edge is

Figure 8.1: Tunable cavity spectroscopy, moving qubit - Holding the cavity fixed at its maximum
frequency and sweeping qubit flux. The qubit crosses the cavity twice. Zero flux bias is where the qubit is
at its maximum frequency. a) The data over a small frequency range. b) A fit to the qubit spectroscopy
is plotted in red and the cavity maximum frequency plotted in blue, with a grey box indicating the
region over which the data from a) were taken.
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Figure 8.2: Flux sensitive tunable cavity spectroscopy, moving qubit - Holding the cavity fixed
at 6.68 and 6.58 GHz and sweeping qubit flux reveals not only the splittings where the qubit and cavity
are on resonance, but also the step edges where the qubit tunnels to an adjacent potential well. The
crosstalk between the qubit bias and the tunable cavity was calibrated out, fixing the cavity frequency
on a given qubit step. The far right plot is a detail of the region in the grey dotted box, more clearly
showing a splitting and step edge.

bigger there. The crosstalk between the qubit flux bias line and the tunable cavity was calibrated

out so that the cavity frequency would be flat across a given qubit step.

The tunable cavity was then used to measure the qubit dispersively in a spectroscopy measure-

ment, as shown in Figure 8.3. The data were taken by recording the phase of the tunable cavity,

driven at low amplitude, while a 2 µs spectroscopy pulse is applied to the qubit. The region around

the cavity, the “straddling regime” (Section 2.4.2) inside the dotted grey box, is not within the

dispersive limit and its behavior is more complex than treated in this work. The straddling regime

Figure 8.3: Dispersive spectroscopy - The tunable cavity was held fixed at its maximum frequency
fcav = 6.78 GHz and used to dispersively measure qubit spectroscopy. The “straddling regime” for this
device is inside the box of grey dotted lines.
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is where the cavity lies between the f21 and the f01 transition frequencies, and is the only region

where the cavity frequency shift may be positive. For this device, when the cavity is at fCav = 6.78

GHz, the straddling regime is fQu = 6.78 to 6.94 GHz. In the dispersive regime, however, the qubit

is clearly seen, though the signal fades far from the cavity as ∆01 becomes large and the dispersive

shift on the cavity becomes small.

8.3 Rabi oscillations and T1

Rabi oscillations were driven and dispersively measured simultaneously. Data traces were taken

in the time domain at each qubit drive pulse length, then combined into the plot in Figure 8.4a.

While the qubit drive pulse is on, the qubit is Rabi flopping between the |0〉 and |1〉 state in the

time domain. Once the drive pulse ends the qubit decays at a rate 1/T1 until it is back in the

ground state. Taking a line cut along the point where the qubit begins decaying gives the Rabi

oscillations in Figure 8.4b. The Rabi oscillation data were fit, giving an oscillation frequency of

27.5 MHz and a decay envelope of 180 ns. Note that the ground state is at about 6◦ and the |1〉

state is at about −6◦, at the top of the plot; as discussed in Section 2.4.2, the weakly anharmonic

metastable phase qubit will have a negative dispersive shift everywhere except in a small region

from about 0g to 4g, the straddling regime for this device.

The time domain measurement records not just the qubit state while driven, but also the decay

of the state after the qubit drive is turned off. It therefore gives both Rabi oscillation data as well

as energy relaxation data, as shown in the time trace in Figure 8.5. The Rabi oscillations in

the time domain don’t swing all the way between the phase limits for the |0〉 and |1〉 states. This

is because the cavity response time Tcav is on the same order as the Rabi period TRabi = 36 ns.

This means that while the Rabi oscillations should be visible in the time domain they will not be

faithfully reproduced by the slowly moving cavity.

A time domain T1 measurement at this flux location is shown in Figure 8.6. The fit to these
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Figure 8.4: Dispersively measured Rabi oscillations - a) Rabi oscillations are driven and measured
dispersively. The data are taken in the time domain for each pulse length. The diagonal linecut is b)
plotted, fit, and offset to center at 0◦, giving a Rabi oscillation frequency of 27.5 MHz and a decay
envelope of 180 ns. The cavity phase> 0◦ when the qubit is in the |0〉 state. c) A zoom in of the region
outlined with grey dotted lines is shown plotted with a 1:1 aspect ratio to emphasize that the Rabi
oscillations can be seen in both the time domain and as a function of the drive pulse duration, and the
two periods are the same. The data were taken at f01 = 7.18 GHz. d) The pulse sequence for taking
the data.

Figure 8.5: Dispersively measured time domain Rabi oscillations - A time trace from the Rabi
oscillation data, showing both the driven oscillations and the T1 decay after the pulse is turned off. The
single time trace has been offset in cavity phase to be symmetric about 0◦ between the |0〉 and |1〉 state
locations.
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Figure 8.6: Dispersively measured T1 - T1 data obtained with dispersive measurement at f01 = 7.18
GHz. The fit gave T1 = 380 ns, a cavity rise time TCav = 6.5 ns, and a total phase swing of ∆φ = ±5.3◦.

data give a T1 = 380 ns, much less than the T1 = 620 ns obtained from tunneling measurement

when the cavity is far detuned to fcav = 4.90 GHz. Even though at this spot (f01 = 7.18 GHz) the

qubit is +10g from the cavity, the Purcell effect is still significantly effecting its decay rate because

the cavity is so strongly coupled to the 50Ω feedline, leading to a very low quality factor. The data

were also fitted for a cavity rise time, giving TCav = 17 ns. This is a bit higher than the rise time

of 6.5 ns calculated from the quality factor of the cavity, though this rise time also includes the 12

ns rise time of the 18 ns Gaussian π−pulse. Since the qubit is decaying while the cavity is ringing

up, the data peak does not represent the full phase swing of the dispersive shift. This phase swing

may be obtained from the combined T1 and TCav fit shown in Figure 8.6, which for this data was

∆φ = ∓5.3◦. The predicted shift from the three level model for this place was ∆φ = ∓6.7◦. This

21% difference is not negligible. It may be due to an imperfect preparation of the |1〉 state by the

π−pulse, or it could be that the dispersive shift model we’ve used has other terms not included

here, or maybe the average number of photons in the cavity was less than one.
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8.4 State discrimination

The T1 measurement shown in Figure 8.6 contains points from both the |0〉 state at the beginning

of the time trace and the |1〉 state at the minimum phase of the time trace. The data points

used to calculate the cavity phase can also be plotted on an IQ plot. Figure 8.7a shows the |0〉

and |1〉 states plotted for different numbers of averages, showing that the state discrimination

improves with increasing averages. Also plotted is a cavity frequency scan for reference, as well

as a grey dotted reference line. Figure 8.7b is the IQ data projected onto the reference line and

histogrammed, with the x−axis the distance d of the data point projection from the midpoint

between the ideal position of the states. For this amplifier chain and dispersive frequency shift,

clear state discrimination occurs somewhere between 106 and 107 averages. Taking the standard

deviation σ of these histograms and plotting with the number of averages n gives the plot in Figure

8.8.

As the qubit and cavity are tuned further from each other the dispersive shift on the cavity

decreases, making distinguishing states more difficult. The cavity IQ and phase plots, sweeping

frequency, for two different detunings are shown in Figure 8.9. The data were taken by

Figure 8.7: IQ noise and state discrimination - a) State discrimination in IQ space for different
averaging times at f01 = 7.31 GHz (+13g). The full resonator curve is plotted on top of the data, as is
a grey dotted line onto which the data points are projected and histogrammed in b). The axis d is the
distance from the center of the line to the projection of a given data point on the line. The contrast is
about 6◦.
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Figure 8.8: IQ noise standard deviation - The square of the standard deviation σ is inversely
proportional to the number of averages n, which is expected for an unsaturated amplifier chain.

Figure 8.9: State discrimination and detuning - a) State discrimination for the detuning ∆01 =
−5g, with a dispersive shift of ∆f = −4.8 MHz, ∆φ = −21◦. b) State discrimination data for the
detuning ∆01 = +20g, giving a dispersive shift of ∆f = −0.4 MHz, ∆φ = −2◦. The large circles are
the data points at one drive frequency where the phase slope is steep, from where the phase shift is
reported.
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putting the qubit in either the |0〉 or |1〉 state and sweeping the drive frequency to the tunable

cavity. The large circle for each plot indicates the data point at a fixed drive frequency where the

|0〉 state phase curve is steepest. This point is where the phase shift associated with each dispersive

frequency shift is measured. The kink in the IQ plots corresponds to the spurious resonance in the

tunable cavity spectroscopy at 6.75 GHz, identified in Figure 7.7. The rotation of the IQ circle

comes from a phase offset between the measurement plane and ports, and the complex offset comes

from crosstalk between feedlines and/or spurious resonance structures, as discussed in Section 3.2.6.

These artifacts are still present after a through calibration procedure where the cavity is detuned

from the frequency range to be calibrated, the calibration data are taken, then the cavity is returned

to the desired frequency. Returning the cavity to the desired frequency for operation changes the

impedance environment enough to introduce the complex offset and phase offset. Although it is

possible to fit the resonance curves in IQ space and remove these offsets, it is usually unnecessary

when measuring the dispersive shift in IQ space since it is a relative shift; offsets do not affect

a quadrature measurement. However, if these offsets are large enough then phase or amplitude

measurements may lose sensitivity.

Figure 8.9 shows the decrease in the ability to distinguish between the |0〉 and |1〉 states as

detuning grows. It is also clear from the two phase plots that the slope of the phase change also

affects distinguishability. Increasing the overall quality factor Q of the cavity will increase the

distinguishability for a given detuning, since the phase shift from the dispersive shift is given by

δφ = ± tan−1
(
2Qg2/ω01∆01

)
. While this alone suggests that it is advantageous to make the quality

factor very large, it is important to remember that the response time of the cavity also increases

with Q, as TCav = QCav/ωCav. The optimal Q to choose will depend on the application, whether

a large state discrimination difference or a short cavity rise time is most desirable.
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8.5 Dispersive shift data

Dispersive shift data were taken at various points along the qubit spectroscopy with the cavity

tuned to its maximum frequency fCav = 6.78 GHz. These data are plotted as red dots in Figure

8.10. Two and three level qubit models are plotted as red dotted and solid lines, respectively. The

three level model clearly matches the data best. Also plotted are data where the qubit is held fixed

at both fQu = 6.28 GHz and fQu = 6.98 GHz while the cavity is swept, represented as blue and

green dots, respectively. The three level model for this swept cavity situation matches the data

well. The fixed qubit models (blue and green) models do not lay on top of the fixed cavity model

since the anharmonicity of the qubit changes when the cavity is held fixed, but does not change

when the qubit is held fixed. The anharmonicity of the qubit enters the dispersive shift expression

through the ∆12 term that results from using the three-level model.

Figure 8.10: Dispersive shift in the tunable cavity - Dispersive shift for holding the cavity fixed
at fcav = 6.78 GHz and moving the qubit are plotted as red dots, along with the corresponding two
and three level models as red dotted and red solid lines, respectively. Data for holding the qubit fixed
at fQu = 6.28 GHz and moving the cavity are plotted as blue dots, with the corresponding three level
model plotted as a blue line, as well as data for the qubit fixed at fQu = 6.98 GHz and its three level
model in green.
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Conclusions and future work

9.1 Summary of results

9.1.1 Demonstration of full qubit control

Full control over the qubit, meaning the ability to place the qubit in an arbitrary state and

fully characterize that state, was shown in Chapter 7, where a metastable phase qubit with via-

style Josephson junctions was measured using tunneling measurement and readout using a DC

SQUID. The microwaves were generated by custom electronics that controlled pulse amplitude,

phase, and duration, with sub-nanosecond resolution. The precession and decay of the initial state

(|0〉+ i|1〉) /
√

2 as it was rotated with a z−pulse of varying duration was also measured and mapped

onto the Bloch sphere as a demonstration of tomographic measurement. While this demonstration

of control over the entire Bloch sphere was not a first in the community, it was an important

demonstration of capability for our group.

9.1.2 Tunneling readout with a tunable cavity

The DC SQUID was replaced with a fast tunable cavity on a new metastable phase qubit design

with only two fabrication layers. Made from shadow evaporated Josephson junctions, this device
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had a greatly improved energy relaxation time. The device was also measured using tunneling

during a fast flux pulse, but readout was accomplished with a tunable cavity biased to be flux

sensitive. Because of the device’s long energy relaxation time, an anti-retrapping measure pulse

was used to improve the contrast compared to a simple square measure pulse. Since the readout

operation occurs after qubit manipulation and measurement, the tunable cavity was free to be used

during qubit manipulation. Energy relaxation data were taken with the cavity at its maximum

and minimum frequencies, across 2 GHz of qubit spectroscopy, to see the Purcell effect loss at two

different cavity frequencies. This is the first time the loss via the Purcell effect has been controlled

by detuning the cavity. This dynamic manipulation of the Purcell effect is a key result of this work,

not yet shown in other devices. It is important because the main drawback of previous cQED

systems has been fixed loss through the cavity over a useful qubit bandwidth; a tunable cavity

allows this region to be used, while still using the cavity to measure.

9.1.3 Tunneling measurement photons in the cavity

The tunable cavity was also used to directly see photons populating the cavity as the metastable

phase qubit rang down after a short tunneling measurement. The photons were fed to the cavity as

the chirped pulse from the qubit ring down crossed resonance with the cavity, over approximately

200 ns. This was evident because the decay constant of the cavity after the measure pulse was

measured as 220 ns, whereas the intrinsic decay time of the cavity was measured as 6.5 ns. Although

others have seen evidence for tunneling photons entering the cavity, this is the first time they have

been observed directly in the cavity. This clearly shows that tunneling measurement is not a viable

measurement scheme for many qubit quantum processors.
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9.1.4 Multiplexing tunable cavities

Four tunable cavities were multiplexed and tuned using one common microwave line and one

common flux bias line. They were not connected to qubits, and were made using the much less reli-

able via-style Josephson junctions. Although qubit measurements were not made in a multiplexed

way, the device demonstrated that the tunable cavities could be clearly distinguished in frequency

space, and required much less wiring. Using only one microwave feedline and only one expensive

amplifier chain can minimize noise thermal photons in the system and lower cost.

9.1.5 Dispersive measurement with a tunable cavity

The tunable cavity was also used to perform dispersive measurement of a metastable phase

qubit. Spectroscopy, Rabi oscillations, and T1 measurements where done dispersively. The disper-

sive shift was measured across the qubit spectroscopy range for one fixed cavity frequency, then

twice more by moving the cavity and holding the qubit at two other fixed frequencies. The data

show a dispersive shift inconsistent with a two level system, but consistent with a three level system.

The metastable phase qubit’s weak anharmonicity is responsible for needing the three level model.

This is the first dispersive measurement of a metastable phase qubit, and could pave the way for

more complex metastable phase qubit processors in the future.

9.2 Future work

9.2.1 Device design/measurement setup improvements

The next generation of devices clearly needs the flux bias line to the qubit to be properly

coupled. Since the flux bias line to the tunable cavity was properly coupled, the next qubit bias

line should use the same design. This should increase qubit dephasing and energy relaxation times.

Along with fixing the bias coil, it may also be advantageous to have all the ground planes tied
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together with microfabricated crossovers instead of wirebond crossovers. This would make the

devices more consistent, as well as being designed to remove all spurious modes from ground plane

potential differences. Although in the device presented in this work most of these modes were

suppressed using the wirebonds, a 10 MHz splitting near the top of the tunable cavity spectroscopy

at 6.75 GHz was still present. This suggests that the wirebond method can be insufficient to

suppress all structural spurious modes, and a more reproducible method should be developed. The

drawback to such a method is that it introduces a dielectric layer to the fabrication that both

increases fabrication complexity and introduces a new materials system that could make the qubit

more lossy, even if all of it is later removed. A simple test for this system would be to use the

device design that is already well characterized in this work and deposit and completely remove

the wiring insulator before depositing the Josephson junction, then characterize the energy loss. If

no difference is seen, the dielectric may be suitable for use in wiring crossovers.

To further increase the qubit energy relaxation time, as well as the tunable cavity internal quality

factor, the finger spacing in their interdigitated capacitors could be increased. This decreasing of

the electric field spacial density between capacitor plates has been shown in other quantum devices

to increase the energy relaxation time[26][76], and should work for these devices as well. Increasing

the tunable cavity’s external quality factor by decreasing the value of its coupling capacitor should

also improve device performance by narrowing the Purcell effect’s influence in the frequency domain,

as well as increasing the cavity’s phase sensitivity to the dispersive shift. This should increase the

signal to noise ratio of the measurement for a given detuning.

The measurement setup could also be improved by increasing the attenuation on cold fridge

microwave and fast flux lines. Only 16 dB of attenuation may be added cold, since any more

attenuation would make the flux bias range too limited to be useful. An improved setup is shown

in Table 9.1, which would give a thermal photon number at the mixing chamber of∼ 0.01. Assuming

the mixing chamber can handle up to 1 µW = −30 dBm of power before warming, and knowing that
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Stage Atten.

4 K 10 dB
Still 10 dB
HXC 0 dB
MXC 20 dB

Table 9.1: Cold attenuators - This heavier attenuation setup would drop the thermal photon number
down to ∼ 0.01 at the mixing chamber.

the tunable cavity becomes nonlinear at −80 or −90 dBm, it is clear that this attenuation setup on

the microwave line will not heat the refrigerator noticeably. More importantly, the attenuators will

not be adding many thermal photons due to local heating of the attenuators by the drive. The fast

flux line has the potential to put a lot of heat into the fridge through the attenuators as relatively

large currents can be on for several microseconds. The voltage limit on the Tektronix AWG5014B

is ±2.25 V into 50Ω, or +20 dBm. The 40 dB of attenuation shown in Table 9.1 would put −20

dBm at the mixing chamber if the AWB5014B were oscillating between its voltage limits. While

this would most certainly heat the mixing chamber noticeably, it is a worst case scenario that does

not occur in practice.

As described in Section 6.2.2, the Tektronix AWG5014B does not generate very sharp or flat

step edges. In this work the pulse edge problems were mostly avoided by waiting a few microseconds

after the pulse step edge and making a linear ramp to roughly correct for the slow drift, though

the problems were still present in the very short measure pulse rising edge. A better solution is

to correct for the nonidealities in the instrument by adding the normalized difference between the

real pulse and the ideal pulse to be generated.

A final setup improvement is to add a bias tee and a fast flux line to the tunable cavity flux

line, and use a DC current source (Yokogawa 7651) for the cavity’s slow flux line. This allows the

cavity to be quickly moved, just like the qubit, for photon transfer experiments. These flux lines

would be a copy of the flux setup for the qubit.
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9.2.2 Bifurcation measurement

Measurement and readout of a quantum system is essentially the encoding of the quantum state

onto a classical state. For the device used in this work the classical state is either a flux state in the

case of the tunneling measurement scheme, or the frequency of a classical resonator in the case of

dispersive measurement. Bifurcation measurement involves encoding the quantum state onto the

amplitude state of a nonlinear resonator. This is useful because the encoding may be very fast, a

few nanoseconds, then the amplitude of the resonator may be decreased so that the latched state

may be read out. This is a fast single-shot measurement and readout, something not achievable

with traditional dispersive measurement without a near quantum limited amplifier. Bifurcation

measurement with a nonlinear cavity has been used on Cooper-pair box qubits[86], flux qubits[87],

and stable phase qubits[88]. Bifurcation measurement has also been employed with stable phase

qubits using linear cavities by exploiting the natural nonlinearity of the cavity dressed states[89].

A natural next step with the device design presented in this work is to perform bifurcation

measurement on the metastable phase qubit using the tunable cavity, thus demonstrating a third

measurement protocol using the same device. It would be interesting to compare the contrast

achieved with this measurement to the contrast achieved in the tunneling measurement, another

single-shot measurement.

9.2.3 Tunable cavity states and anharmonicity

The tunable cavity is an interesting device because it is essentially an anharmonic metastable

phase qubit, or a slightly anharmonic harmonic oscillator, all while having a single valued potential

well. It becomes fairly anharmonic at its lowest frequency, but since it is never double valued the

cavity is stable here. Figure 9.1 is a plot of the relative anharmonicity αr overlaid on the spec-

troscopy across one flux quantum. This demonstrates that the tunable cavity may be used as both

a harmonic oscillator (where αr = 0) and a qubit with positive or negative relative anharmonicity,
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Figure 9.1: Tunable cavity anharmonicity - The tunable cavity relative anharmonicity αr is plotted
over its spectroscopy, across one flux quantum. The cavity becomes somewhat anharmonic at its lowest
frequency. This plot was made by solving the Schrödinger equation for a device with βL = 0.9 and a
large capacitor. The series inductance Ls was not included as the Hamiltonian becomes nontrivial.

as long as its lifetime is sufficiently long in both regimes. Both the internal and external quality

factors of the cavity would need to be much higher than the device presented here. One could also

load a state into the cavity from the qubit and then probe the state directly using the microwave

line. Since these interesting regions are near the low frequency side of the spectroscopy where the

slope is steep, it would be crucial to minimize flux noise to the cavity. Likewise, one could also

use the qubit as a cavity by operating the qubit in its deep, nearly harmonic potential and directly

monitoring it with a microwave feedline.

9.2.4 Multiplexing and cavity damping

Finally, a system of multiplexed metastable phase qubit/tunable cavity pairs could be built, to

make a simple quantum processor using only one microwave control line and amplifier chain, though

each qubit and each cavity would need its own flux control line. The advantages of multiplexing

include saving on precious dilution fridge wiring lines, as well as needing only one expensive ampli-

fication and detection chain. Multiplexing is likely to be useful when scaling up to large, complex

quantum processors.

The tunable cavity may also be used to damp the qubit, initializing it to the ground state. As
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qubit lifetimes increase, the low quality factor tunable cavity could be used when waiting for the

natural decay of the qubit to initialize the state is impractical. One could imagine measuring the

qubit state using the cavity, as has been done here, then tuning the cavity to be on resonance with

the qubit so that the qubit decays to the ground state.

9.3 Final thoughts

By exploiting the tunable nature of superconducting Josephson junction devices, great flexibility

may be gained. The ephemeral nature of quantum systems seems to require a multidimensional

flexibility that the much more stable, albeit far advanced, semiconductor systems do not. This

ephemerality and flexibility hopefully will lead to quantum computers that do powerful things, far

beyond today’s imaginations can dream. During my 7 1/2 years in this field I have seen advance

after advance that has surprised me, and the pace seems to be increasing. I hope I continue to be

surprised.
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Appendix A

10.1 Qubit with DC SQUID process sheet

The device used to demonstrate full tomographic control, made with via-style Josephson junc-

tions (Section 5.2.1.1) and reported on in Section 7.1, was die 1007 from the wafer fabricated by

Katarina Cicak and labeled wfr080330.2xqb16-IDcap-CPW8GHz.kc. The process sheet for this

wafer is reproduced below.
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10.2 Qubit with tunable cavity process sheet

The device used to demonstrate dispersive measurement, made with shadow evaporated Joseph-

son junctions (Section 5.2.2) and reported on in Sections 7.2-7.2.7 and Chapter 8, was die 0503

from the wafer labeled wfr110903.SE.jdw. The device was fabricated by the author. The process

sheet for this wafer is reproduced below.
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10.3 Multiplexed tunable cavities process sheet

The device used to demonstrate multiplexed tunable cavities, made with via-style Josephson

junctions (Section 5.2.1.1) and reported on in Section 7.2.8, was die 0507 from the wafer labeled

wfr090608.MultiSQUIDs.jdw. The device was fabricated by the author, and also included vacuum

gap capacitors. The process sheet for this wafer is reproduced below.
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[4] S. Dürr, T. Nonn, and G. Rempe. Origin of quantum-mechanical complementarity
probed by a ’which-way’ experiment in an atom interferometer. Nature, 395:33,
1998. 1

[5] P. Bertet, S. Osnaghi, A. Rauschenbeutel, G. Nogues, A. Auffeves, M. Brune,
J. M. Raimond, and S. Haroche. A complementarity experiment with an interfer-
ometer at the quantum-classical boundary. Nature, 411:166, 2001. 1

[6] Richard P. Feynman. Simulating Physics with Computers. International Journal of
Theoretical Physics, 21:467, 1982. 2

[7] David P. DiVincenzo. The Physical Implementation of Quantum Computation.
Fortschritte der Physik, 48:771, 2000. 2, 11, 20

[8] Lieven M. K. Vandersypen, Matthias Steffen, Gregory Breyta, Costantino S.
Yannoni, Mark H. Sherwood, and Isaac L. Chuang. Experimental realization of
Shor’s quantum factoring algorithm. Nature, 414:883, 2001. 2

[9] D. Hanneke, J. P. Home, J. D. Jost, J. M. Amini, D. Leibfried, and D. J. Wineland.
Realization of a programmable two-qubit quantum processor. Nature Physics, 6:13,
2010. 2

[10] C. Ospelkaus, U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfried,
and D. J. Wineland. Microwave quantum logic gates for trapped ions. Nature,
476:181, 2011. 2
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