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Introduction - DiVincenzo criteria

Gated quantum processing requires:

1 Scalable physical system with well characterized qubits

2 Ability to initialize qubits to a simple fiducial state (i.e. |000...〉)

3 Decoherence time � than gate operation time

4 Set of “universal” quantum gates

5 Qubit-specific measurement capability

David P. DiVincenzo, The Physical Implementation of Quantum Computation Fortschritte der Physik 48 771 2000
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Introduction - Implementations

phase qubit

tunneling measurement

transmon

dispersive measurement

E. Lucero, Computing prime factors with a Josephson phase qubit quantum processor Nature Physics 8 719 2012
L. DiCarlo et al, Demonstration of two-qubit algorithms with a superconducting quantum processor Nature 460 240 2009
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Introduction - Purcell effect

A. A. Houck et al, Controlling the Spontaneous Emission of a Superconducting Transmon Qubit Physical Review Letters
101 080502 2008
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Quantum harmonic oscillator

H = 1
2LI

2
L + 1

2CV
2
C → Ĥ = ~ω0

(
a†a + 1/2

)
ω0/2π ≈ 2− 10GHz , T ≈ 40mK , kBT � ~ω0
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The phase qubit
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Phase qubit tunneling measurement
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Tunneling measurement ringdown

R. McDermott et al, Simultaneous State Measurement of Coupled Josephson Phase Qubits Science 307 1299 2005
F. Altomare et al, Measurement crosstalk between two phase qubits coupled by a coplanar waveguide Physical Review B

82 094510 2010
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Jaynes-Cummings Hamiltonian

HJC =
1

2
~ωQuσz︸ ︷︷ ︸
HQu

+ ~ωCav

(
a†a +

1

2

)
︸ ︷︷ ︸

HCav

+ ~g
(
a†σ− + aσ+

)
︸ ︷︷ ︸

Hint

HJC ≈ ~
[
ωCav +

g2

∆01
σz

]
a†a +

~
2

[
ωQu +

g2

∆01

]
σz

ω̃Cav = ωCav ±
g2

∆01
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The tunable cavity
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The device
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The device
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Dilution refrigerator mounting
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Microwave chain

Amplifier f (GHz) G (dB) TN (K )

SQUID 6.6− 6.9 ≈ 17 ≈ 1
HEMT 4− 12 ≈ 38 ≈ 4
RT 0.7− 18 ≈ 26 ≈ 250
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Tunable cavity characterization

fmax = 6.78GHz
QCav = 280
TCav = QCav

ωCav
= 6.5ns

Qint = 8970
Qext = 290
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Cavity spectroscopy
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Flux readout with microwaves

T. Wirth et al, Microwave readout scheme for a Josephson phase qubit Applied Physics Letters 97 262508 2010
Y. Chen et al, Multiplexed dispersive readout of superconducting phase qubits Applied Physics Letters 101 182601 2012
U. Patel et al, Coherent Josephson phase qubit with a single crystal silicon capacitor arXiv.org

cond-mat.supr-con:1210.1545v1 2012
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Qubit spectroscopy
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Qubit spectroscopy
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Qubit characterization

Jed Whittaker (NIST/CU) Tunable cavity measurements February 7, 2013 20 / 36



Qubit-cavity spectroscopy

g/2π = 40MHz

Jed Whittaker (NIST/CU) Tunable cavity measurements February 7, 2013 21 / 36



Dispersive measurement
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Dispersive qubit spectroscopy

δω = ± g2

∆01
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The AC Stark shift, ∆01 � g

H ≈ ~ωCav

(
a†a +

1

2

)
+

~
2

[
ωQu + 2

g2

∆01
a†a +

g2

∆01

]
σz

ω̃Qu = ωQu + 2n
g2

∆01︸ ︷︷ ︸
AC Stark

+
g2

∆01︸︷︷︸
Lamb

, ∆01 = ω01 − ωCav
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Rabi oscillations
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Rabi oscillations
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T1 data

f01 = 7.18GHz , fCav = 6.78GHz (∆01 = +10g)

T1 = 380ns (620ns with fCav = 4.9GHz), TCav = 17ns
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State discrimination
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The dispersive shift, ∆01 � g
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The three level dispersive shift, ∆01 � g

ω̃Cav = ωCav ±
(

g2

∆01
− g2

∆12

)
∆12 = ω12 − ωCav

Frederick W. Strauch, Quantum logic gates for superconducting resonator qudits Physical Review A 84 052313 2011
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Dispersive shifts

Jed Whittaker (NIST/CU) Tunable cavity measurements February 7, 2013 31 / 36



Dispersive shifts
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Dispersive shifts
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The Purcell effect

T1 = 1
γP+γQu

γP = κ |〈f |a|i〉|2 = ωCav
QCav

g2

∆2
01

↑ QCav =↑ TCav → slower cavity

TCav � TQu for measurement
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The Purcell effect

T1 = 1
γP+γQu

γP = 2πfCav
QCav

g2

∆2
01

γQu = 1/TQu
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New Purcell data

fCav = 6.96 GHz, QCav ≈ 1500, T1 ≈ 1.5 µs, g = 65 MHz
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Summary of results

Read out results of tunneling measurement with tunable cavity

Dispersively measured a phase qubit

Observed and changed Purcell effect with tunable cavity
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Future work

Design improvements

Perform bifurcation measurement, compare to tunneling measurement

Swap cavity and qubit roles in one device; exploit tunable
anharmonicity

Multiplex multiple devices
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